Skip to main content
Log in

Deformation of Nickel Titanium Single Crystal under Compressive Pulse

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

Nickel titanium single crystal is used to show the importance of the volume compressibility anisotropy in analyzing the elastoplastic deformation processes in metal single crystals with the cubic symmetry. The process of uniform bulk deformation corresponds to the process of nonuniform stress-strain state of metal single crystals of cubic symmetry for several orientations of the theoretical coordinate system relative to crystallographic directions of the main axes. The indicative surface of the volume compressibility (or its reciprocal variable of bulk modulus) has an aspherical shape and is the function of the Euler angles. This is shown for the first time based on the solution of the model problem, viz. determination of the stress-strain state of a spherical body made of nickel titanium single crystal during the transmission of a compressive pulse through the tested material. In general case of orientation of the theoretical coordinate system relative to main crystallographic axes, a spherical body made of nickel titanium single crystal undergoes deformation due to the compressive load and acquires the shape of a two-axial ellipsoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gaillac, P. Pullumbi, and F. X. Coudert, J. Phys. Condens. Matter, 28, 275201 (2016).

    Article  Google Scholar 

  2. S. A. Muslov, A. V. Kuznetsov, V. N. Khachin, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 30, No. 8, 104–105 (1987).

    Google Scholar 

  3. Materials Project. Open Web Base. TiNi; www.materialsproject.org/materials/mp-571

  4. X. F. Wang, et al., Phys. Rev. B, 85, 134108 (2012).

    Article  ADS  Google Scholar 

  5. S. A. Muslov, A. I. Lotkov, and S. D. Arutyunov, Russ. Phys. J., 62, No. 8, 1417–1427 (2019).

    Article  Google Scholar 

  6. S. A. Muslov and A. I. Lotkov, AIP Conf. Proc., 2051, 020207 (2018).

  7. A. I. Lotkov, V. P. Lapshin, V. A. Goncharova, et al., in: Proc. Int. Sci. Conf. on Martensitic Transformation, Journal de Physique IV, Paris (1995), pp. C8-729–C8-734.

  8. R. Vignjevic, N. Djordjevic, and V. Panov, Int. J. Plasticity, 38, 47–85 (2012).

    Article  Google Scholar 

  9. M. N. Krivosheina, S. V. Kobenko, E. V. Tuch, et al., J. Mater. Sci. Technol., 35, No. 7, 1–8 (2018).

    Google Scholar 

  10. E. V. Tuch and E. A. Strebkova, Russ. Phys. J., 62, No. 4, 705–709 (2019).

    Article  Google Scholar 

  11. R. H. Baughman, J. M. Shacklette, A. A. Zakhidov, and S. Stafström, Nature, 392, 362–365 (1998).

    Article  ADS  Google Scholar 

  12. Toshihiro Mita, Katsuhiro Kawashima, Masaaki Misumi, and Masafumi Ohkubo, Trans. Jpn. Soc. Mech. Eng. A, 76, No. 763, 290–295 (2010).

    Article  Google Scholar 

  13. Z. A.D. Lethbridge, et al., Acta Mater., 58, 6444–6451 (2010).

    Article  ADS  Google Scholar 

  14. A. I. Epishin and D. S. Lisovenko, Tech. Phys. Russ. J. Appl. Phys., 61, No. 10, 1516–1524 (2016).

    Google Scholar 

  15. K. W. Wojciechowski, CMST, 11, No. 1, 73–79 (2005).

    Article  Google Scholar 

  16. A. Ballato, IEEE, 43, No. 1, 56–62 (1996).

    Google Scholar 

  17. S. Lia, H. Hassaninb, M. M. Attallaha, et al., Acta Mater., 105, 75–83 (2016).

    Article  ADS  Google Scholar 

  18. SC-EMA: Self-Consistent Elasticity of Multi-phase Aggregates; http://scema.mpie.de

  19. R. Gaillac and F.-X. Coudert; http://progs.coudert.name/elate/mp?query=mp-571

  20. ELATE: Elastic Tensor Analysis; http://progs.coudert.name/elate

  21. Dušan Lago, Effective Tool for Material Elasticity Computation, Master’s Thesis. Spring, Brno (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Krivosheina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 63–67, September, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivosheina, M.N., Tuch, E.V. Deformation of Nickel Titanium Single Crystal under Compressive Pulse. Russ Phys J 63, 1519–1524 (2021). https://doi.org/10.1007/s11182-021-02200-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02200-0

Keywords

Navigation