Skip to main content
Log in

Air Cavity Capture by a Flat Channel with Magnetic Fluid in an Annular Magnet

  • PHYSICS OF MAGNETIC PHENOMENA
  • Published:
Russian Physics Journal Aims and scope

The paper discusses research on visualization of air cavity capture and transportation in a flat channel filled with magnetic fluid and located along the annular magnet axis. It takes the results of the model theory of “weakly magnetic medium” based on construction of a system of isolines of magnetic field intensity module (Н = const) for the magnetic fluid filling the tube and compares them to the air cavity image produced in a thin fluid layer. Distinctive features of the stage-by-stage air cavity capture are theoretically explained for different magnetic fluid concentrations. The results can be useful in solving practical microhydraulics problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ishimoto et al., JSME Int. J. Series B. Fluids and Thermal Eng., 38, Issue 3, 382–387 (1995).

    Article  ADS  Google Scholar 

  2. Y. Q. He, Q. C. Bi, and D. X. Shi, Fluid Dynamics Mater. Proc., 7, Issue 4, 357–370 (2011).

    ADS  Google Scholar 

  3. V. Bashtovoi, M. Kovalev, and A. Reks, JMMM, 289, 350–352 (2005).

    Article  ADS  Google Scholar 

  4. M. S. Korlie et al., J. Phys.: Condensed Matter, 20, Issue 20, 204143 (2008).

    ADS  Google Scholar 

  5. X. H. Tian et al., ISIJ Int., ISIJINT-2015-493 (2015).

  6. A. S. Dizaji, M. Mohammadpourfard, and H. Aminfar, JMMM, 449, 185–196 (2018).

    Article  ADS  Google Scholar 

  7. S. Malvar, R. G. Gontijo, and F. R. Cunha, J. Eng. Math., 108, Issue 1, 143–170 (2018).

    Article  Google Scholar 

  8. W. K. Lee et al., Phys. Rev. E., 82, Issue 1, 016302 (2010).

    Article  ADS  Google Scholar 

  9. N. C. Popa et al., Sensors and Actuators A: Physical, 59, Issue 1–3, 307–310 (1997).

    Article  Google Scholar 

  10. N. C. Popa et al., JMMM, 201, Issue 1–3, 385–390 (1999).

    Article  ADS  Google Scholar 

  11. B. Berkovsky, V. Bashtovoi, V. Mikhalev, and A. Reks, JMMM, 65, 239– 241 (1987).

    Article  ADS  Google Scholar 

  12. V. Bashtovoi, S. Pogirnitskaya, and A. Reks, JMMM, 201, 300–302 (1999).

    Article  ADS  Google Scholar 

  13. V. M. Polunin et al., Magnetohydrodynamics, 54(3), 211–223 (2018).

    Article  MathSciNet  Google Scholar 

  14. V. M. Polunin, P. A. Ryapolov, K. S. Ryabtsev, et al., Russ. Phys. J., 61, Issue 7, 1347–1357 (2018).

    Article  Google Scholar 

  15. V. G. Bashtovoi, B. M. Berkovsky, A. N. Vislovich, Introduction to Thermomechanics of Magnetic Fluids [in Russian], IVTAN, Moscow (1985).

    Google Scholar 

  16. A. Sommerfeld, Electrodynamics [Russian translation], IL, Moscow (1958).

    Google Scholar 

  17. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  18. P. A. Ryapolov, V. M. Polunin, E. B. Postnikov, et al., JMMM, 497, 165925 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Ryapolov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 163–169, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryapolov, P.A., Polunin, V.M., Postnikov, E.B. et al. Air Cavity Capture by a Flat Channel with Magnetic Fluid in an Annular Magnet. Russ Phys J 63, 1085–1092 (2020). https://doi.org/10.1007/s11182-020-02140-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02140-1

Keywords

Navigation