Skip to main content

Advertisement

Log in

Studying Strain Localization in Brittle Materials during the Brazilian Test

  • Published:
Russian Physics Journal Aims and scope

Sintered yttrium-stabilized zirconia is numerically and experimentally investigated during the Brazilian test. The strain and fracture of homogeneous and inhomogeneous cylindrical specimens under diametral compression are numerically simulated within the framework of mechanics of continuum mechanics. The specimen inhomogeneity is phenomenologically described by random assignment of the strength characteristics in computational cells. Unlike a homogeneous specimen, the strain localization and the formation of numerous fragments at fracture are observed in an inhomogeneous specimen. It is established that the zirconia strain is macroscopically localized. It is shown that sizes of coherently diffracting domains of the tetragonal phase and microdistortion of the lattice after sintering change compared to the initial state and differ for different fragments of a fractured specimen. The internal microstresses on different fragment surfaces change in the range 245–320 MPa depending on the arising strain inhomogeneity. The strain localization correlates with the inhomogeneity of the microstresses arising in the material undergoing deformation. The quantitative and qualitative agreement of the calculated results with the experimental data is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Physics of Macrolocalization of a Plastic Flow [in Russiam], Nauka, Novosibirsk (2008).

    Google Scholar 

  2. 2. I. A. Razumovskii, Interference and Optical Methods of Mechanics of a Deformable Soids [in Russian], Publishing House of Moscow State University, Moscow (2007).

  3. A. Yu. Smolin, G. M. Eremina, and S. Yu. Korostelev, Russ. Phys. J., 62, No. 8, 1445–1454 (2019).

    Article  Google Scholar 

  4. L. B. Zuev, Autowave Plasticity. Localization and Collective Modes [in Russian], Fizmatlit, Moscow (2018).

    Google Scholar 

  5. P. V. Makarov, I. Yu. Smolin, I. P. Prokopinsky, et al., Int. J. Fract., 100, No. 2, 121–131 (1999); https://doi.org/10.1023/A:1018765801332.

    Article  Google Scholar 

  6. S. A. Barannikova, S. P. Buyakova, L. B. Zuev, et al., Pis’ma Zh. Tekhn. Fiz., 33, No. 11, 57–64 (2007).

    Google Scholar 

  7. I. N. Sevostyanova, T. Yu. Sablina, N. L. Savchenko, et al., IOP Conf. Ser.: Mater. Sci. Eng., 447, 012022-1-012022-4 (2018); https://doi.org/10.1088/1757-899X/447/1/012022.

    Article  Google Scholar 

  8. M. Z. Sheikh, Z. Wang, B. Du, et al., Ceram. Int., 45, 7931–7944 (2019); https://doi.org/10.1016/j.ceramint.2019.01.106.

    Article  Google Scholar 

  9. D. Li and L. N. Y. Wong, Rock Mech. Rock Eng., 46, 269–287 (2003); https://doi.org/10.1007/s00603-012-0257-7.

    Article  ADS  Google Scholar 

  10. M. Mousavi Nezhad, Q. J. Fisher, E. Gironacci, et al., Rock Mech. Rock Eng., 51, 1755–1775 (2018); https://doi.org/10.1007/s00603-018-1429-x.

    Article  ADS  Google Scholar 

  11. V. Yu. Goltsev, A. V. Osintsev, and A. S. Plotnikov, Lett. Mater., 7, No. 1, 21–25 (2017); https://doi.org/10.22226/2410-3535-2017-1-21-25.

    Article  Google Scholar 

  12. K. Matsui, H. Horikoshi, N. Ohmichi, et al., J. Am. Ceram. Soc., 86, 1401–1408 (2003); https://doi.org/10.1111/j.1151-2916.2003.tb03483.x.

    Article  Google Scholar 

  13. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, et al., Crystallography, Radiography, and Electron Microscopy [in Russian], Metallurgiya, Moscow (1982).

  14. K. I. Grant, R. D. Rawlings, and R. J. Sweeney, Mater. Sci. Mater. Med., 12, No. 6, 557–564 (2001).

    Article  Google Scholar 

  15. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity [Russian translation], Nauka, Moscow (1975).

    Google Scholar 

  16. C. C. Garcia-Fernandez, C. Gonzalez-Nicieza, M. I. Alvarez-Fernandez, et al., Int. J. Rock Mech. Min. Sci., 103, No. 3, 254-265 (2018); https://doi.org/10.1016/j.ijmms.2018.01.45.

    Article  Google Scholar 

  17. M. A. Sutton, J. J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements. Theory and Applications, Springer, Berlin; Heidelberg (2009).

    Google Scholar 

  18. I. N. Sevostyanova, T. Yu. Sablina, V. V. Gorbatenko, et al., Tech. Phys. Lett., 45, No. 9, 943–946 (2019); https://doi.org/10.1134/S1063785019090281.

    Article  ADS  Google Scholar 

  19. V. Le Corre, N. Brusselle-Dupend, and M. Moreaud, Mech. Mat., 114, 161–171 (2017); https://doi.org/10.1016/j.mechmat.2017.08.002.

    Article  Google Scholar 

  20. V. A. Mikushina, I. Yu. Smolin, Vestn. Tomsk. Gosud. Univ. Matem. Mekh., No. 58, 99–108 (2019); https://doi.org/10.17223/19988621/58/8.

    Article  Google Scholar 

  21. M. L. Wilkins, Computer Simulation of Dynamic Phenomena, Springer Verlag, Berlin; Heidelberg (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kulkov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 70–76, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkov, S.N., Smolin, I.Y., Mikushina, V.A. et al. Studying Strain Localization in Brittle Materials during the Brazilian Test. Russ Phys J 63, 976–983 (2020). https://doi.org/10.1007/s11182-020-02126-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02126-z

Keywords

Navigation