Skip to main content
Log in

Switching Autowaves in Materials with Dislocations and Martensitic Transformations

  • Published:
Russian Physics Journal Aims and scope

The paper focuses on the investigation of the strain kinetics at the yield point of materials with shear dislocations and martensitic transformations at a microlevel. In both cases, the autowave propagation and localized plastic deformation occur. The autowave propagation velocity depends on the nonlinear speed of the crosshead movement. It is found that its nature is the same both in low carbon mild steel and titanium nickelide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Zuev, Autowave Plasticity. Localization and Collective Modes [in Russian], Fizmatlit, Moscow (2018).

    Google Scholar 

  2. V. I. Vladimirov, Theory of Defects in Crystals [in Russian], Nauka, Leningrad (1987), pp. 43–57.

    Google Scholar 

  3. E. E. Zasimchuk and V. I. Isaichev, Russ. Phys. J., 34, No. 3, 217–224 (1991).

    Google Scholar 

  4. N. A. Koneva and E. V. Kozlov, Russ. Phys. J., 34, No. 3, 224–236 (1991).

    Google Scholar 

  5. G. A. Malygin, Phys. Usp., 42, No. 9, 887–916 (1999).

    Article  ADS  Google Scholar 

  6. D. Khulmann-Wilsdorf, Dislocations in Solids, Elsevier, Amsterdam; Boston (2002), pp. 213–338.

    Google Scholar 

  7. V. A. Likhachev and V. G. Malinin, Structural and Analytical Theory of Strength [in Russian], Nauka, Saint-Petersburg (1993).

    Google Scholar 

  8. P. Landau, R. Z. Shneck, G. Makov, et al., Mat. Sci. Eng. A-Struct., 3, 012004 (2009).

    Google Scholar 

  9. V. E. Panin and V. E. Egorushkin, Phys. Mesomech., 18, No. 4, 377–390 (2015).

    Article  Google Scholar 

  10. L. B. Zuev and V. I. Danilov, Philos. Mag., 79, No. 1, 43–57 (1999).

    Article  ADS  Google Scholar 

  11. L. B. Zuev and V. I. Danilov, Uspekhi fiziki metallov, 3. No. 3, 237–404 (2002).

  12. L. B. Zuev, N. V. Zarikovskaya, and M. A. Fedosova, Tech. Phys. Russ. J. Appl. Phys., 55, No. 9, 1299–1305 (2010).

    Google Scholar 

  13. L. B. Zuev and S. A. Barannikova, Russ. Phys. J., 62, No. 8, 1338–1342 (2019).

    Article  Google Scholar 

  14. L. B. Zuev, Metallofizika i noveishie tekhnologii, 38, No. 10, 1335–1349 (2012).

  15. Sutton M. A., Wolters W. J., Peters W. H., et al., Image Vis. Comput., 1(3), 133–139 (1983).

    Article  Google Scholar 

  16. V. I. Danilov, V. V. Gorbatenko, L. B. Zuev, et al., Russ. Phys. J., 62, No. 8, 1343–1348 (2019).

    Article  Google Scholar 

  17. V. I. Danilov, D. V. Orlova, V. V. Gorbatenko, et al., AIP Conf. Proc., 2167, 020065 (2019).

    Article  Google Scholar 

  18. E. O. Hall, Yield Point Phenomena in Metals and Alloys, Plenum Press, New York (1970).

    Book  Google Scholar 

  19. A. Yu. Loskutov and A. S. Mikhailov, Introduction to Synergism [in Russian], Nauka, Moscow (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Danilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 37–42, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, V.I., Gorbatenko, V.V. & Danilova, L.V. Switching Autowaves in Materials with Dislocations and Martensitic Transformations. Russ Phys J 63, 940–946 (2020). https://doi.org/10.1007/s11182-020-02121-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02121-4

Keywords

Navigation