Skip to main content
Log in

The Effect of Irradiation of a Titanium Alloy of the Ti–6Al–4V–Н System with Pulsed Electron Beams on Its Creep

  • Published:
Russian Physics Journal Aims and scope

Comparative studies of the effect of pulsed electron beam irradiation of the Ti–6Al–4V titanium alloys with the contents of hydrogen of 0.002 wt.% (VT6 alloy) and 0.23 wt.% (VT6–0.23H alloy) on their structure and peculiar creep behavior are performed at a temperature of 723 K within the range of creep rates 10–7–10–5 s–1. It is found out that irradiation of the VT6 and VT6–0.23H alloy samples with electron beams in the no-melting mode neither changes nor increases their steady-state creep. It is shown that formation of a modified surface layer during electron beam irradiation in the melting mode gives rise to a decrease in the steady-state creep rate in the VT6 alloy and its increase in the VT6–0.23H alloy. It is demonstrated that the dependence of the steady-state creep of the VT6 alloy on the stress before and after pulsed electron beam irradiation is satisfactorily described by the creep power law. The presence of hydrogen in a solid solution in the VT6–0.23H alloy violates the creep power law. The physical causes for the high values of a stress sensitivity index and an effective creep activation energy of the VT6 and VT6–0.23H alloys are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Baranov, O. A. Troitskii, Yu. S. Abramov, et al., Principal Physics of Electric Discharge Machining and Electroplastic Treatment and New Materials [in Russian], MGIU, Moscow (2001).

    Google Scholar 

  2. Y. J. Liu, H. L. Wang, W. T. Hou, et al., Acta Mater., 113, 56–67 (2016).

    Article  Google Scholar 

  3. Иванов Yu. F. Ivanov, A. A. Klopotov, A. I. Potekaev, et al., Russ. Phys. J., 60, No. 1, 175–180 (2017).

    Article  Google Scholar 

  4. X. D. Zhang, S. Z. Hao, X. N. Li, et al., Appl. Surf. Sci., 257, No. 13, 5899–5902 (2011).

    Article  ADS  Google Scholar 

  5. V. E. Panin, A. V. Panin, O. B. Perevalova, et al., Physical Mesomechanics, 22(5), 345–354(2019).

    Article  Google Scholar 

  6. Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties, Springer Science & Business Media (2006).

    Google Scholar 

  7. A. A. Ilyin, B. A. Kolachev, V. K. Nosov, et al., A Hydrogen Technology of Titanium Alloys [in Russian], MISIS, Moscow (2002).

    Google Scholar 

  8. R. S. Laptev, A. M. Lider, Y. S. Bordulev, et al., J. Alloys Compd., 645, 193–195 (2015).

    Article  Google Scholar 

  9. A. M. Lider, Positron Spectroscopy for Testing Microstructural Changes in the Metal-Hydrogen Systems [in Russian], Dissert. Dr. Tech. Sciences, NR TPU, Tomsk (2017).

    Google Scholar 

  10. N. N. Koval and Yu. F. Ivanov, Russ. Phys. J., 51, No. 5, 505–516 (2008).

    Article  Google Scholar 

  11. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray Diffraction and Electron-Optical Analyses [in Russian], MISIS, Moscow (2002).

    Google Scholar 

  12. G. K. Williamson and R. E. Smallman, Phil. Mag., 1, No. 1, 34–46 (1956).

    Article  ADS  Google Scholar 

  13. F. Garofalo, Fundamentals of Creep Rupture in Metals, Mc Millan, New York (1965).

    Google Scholar 

  14. M. V. Maltsev and N. I. Kashnikov, Phys. Met. Metallogr., 45, No. 2, 426–428 (1978).

    Google Scholar 

  15. B. A. Kolachev, Hydrogen Brittleness of Metals [in Russian], Metallurgiya, Moscow (1985).

    Google Scholar 

  16. E. N. Stepanova, G. P. Grabovetskaya, and O. V. Zabudchenko, Defect and Diffusion Forum, 385, 212–217 (2018).

    Article  Google Scholar 

  17. I. P. Mishin, G. P. Grabovetskaya, E. N. Stepanova, et al., Russ. Phys. J., 62, No. 5, 854–860 (2019).

    Article  Google Scholar 

  18. E. V. Kollingz, Physical Metallurgy of Titanium Alloys [in Russian], Metallurgiya, Moscow (1988).

    Google Scholar 

  19. G. J. Frost and M. F. Ashby, Deformation Mechanism Maps, Pergamon Press (1982).

    Google Scholar 

  20. P. M. Sargent and M. F. Ashby, Scripta Metall., 16, 1415–1422 (1982).

    Article  Google Scholar 

  21. M. J. R. Barboza, E. A. C. Perez, M. M. Medeiros, et al., Mater. Sci. Eng. A, 428, 319–326 (2006).

    Article  Google Scholar 

  22. W. J. Evans and G. F. Harrison, J. Mater. Sci., 18, 3449–3455 (1983).

    Article  ADS  Google Scholar 

  23. P. V. Geld, P. A. Ryabov, and E. S. Kodes, Hydrogen and Imperfections of Metal Structure [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Grabovetskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 30–36, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovetskaya, G.P., Stepanova, E.N., Mishin, I.P. et al. The Effect of Irradiation of a Titanium Alloy of the Ti–6Al–4V–Н System with Pulsed Electron Beams on Its Creep. Russ Phys J 63, 932–939 (2020). https://doi.org/10.1007/s11182-020-02120-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02120-5

Keywords

Navigation