Skip to main content
Log in

Special Features of the Discharge Formation in the Trigger Unit Based on Breakdown Over the Semiconductor Surface in Sealed-Off Cold-Cathode Thyratron

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The results of investigation of pulsed discharge in the trigger unit based on breakdown over the semiconductor surface in sealed-off cold-cathode thyratrons TDI1-50k/50 are presented. A method for estimation of surface discharge currents is proposed. Based on the data on current distribution between the trigger unit electrodes, the mechanisms of discharge formation in the trigger unit are revealed. Data on delay times and jitter in delay times to ignition of hollow-anode arc discharge in the trigger unit and to breakdown in the thyratron main gap were obtained. It is shown that with the increase of the semiconductor resistance delay times, the jitter also increases. The trigger circuit, which provides the jitter in delay times to breakdown in the thyratron main gap within 10 ns is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Korolev and N. N. Koval, J. Phys. D, 51, No. 32, 323001 (2018).

    Google Scholar 

  2. R. P. Lamba, V. Pathania, B. L. Meena, et al., Rev. Sci. Instrum., 86, 103508 (2015).

    ADS  Google Scholar 

  3. J. Q. Yan, S. K. Shen, Y. A. Wang, et al., Rev. Sci. Instrum., 89, No. 6, 065102 (2018).

    ADS  Google Scholar 

  4. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci., 17, No. 5, 748–753 (1989).

    ADS  Google Scholar 

  5. A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys., 74, No. 9, 5366–5371 (1993).

    ADS  Google Scholar 

  6. K. Bergmann, J. Vieker, and A. Wezyk, J. Appl. Phys., 120, No. 14, 143302 (2016).

    ADS  Google Scholar 

  7. X. T. Cao, J. Hu, R. X. Zhang, et al., AIP Adv., 7, No. 11, 115005 (2017).

    ADS  Google Scholar 

  8. N. Kumar, D. K. Pal, A. S. Jadon, et al., Rev. Sci. Instrum., 87, No. 3, 033503 (2016).

    ADS  Google Scholar 

  9. J. Zhang and X. Liu, IEEE Trans. Dielectr. Electr. Insul., 24, No. 4, 2050–2055 (2017).

    Google Scholar 

  10. Y. D. Korolev, N. V. Landl, V. G. Geyman, and O. B. Frants, Phys. Plasmas, 25, No. 11, 113510 (2018).

    ADS  Google Scholar 

  11. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., Phys. Plasmas, 24, No. 10, 0103526 (2017).

    ADS  Google Scholar 

  12. Y. D. Korolev, Rus. J. Gen. Chem., 85, No. 5, 1311–1325 (2015).

    Google Scholar 

  13. Y. D. Korolev, V. O. Nekhoroshev, O. B. Frants, et al., J. Phys. Commun., 41, No. 8, 085002 (2019).

    Google Scholar 

  14. N. V. Landl, Y. D. Korolev, V. G. Geyman, and O. B. Frants, Russ. Phys. J., 60, No. 8, 1277–1284 (2017).

    Google Scholar 

  15. V. D. Bochkov, A. V. Kolesnikov, Y. D. Korolev, et al., IEEE Trans. Plasma Sci., 23, No. 3, 341–346 (1995).

    ADS  Google Scholar 

  16. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Russ. Phys. J., 62, No 7, 1269–1278 (2019).

    Google Scholar 

  17. J. Zhang, X. Li, Y. Liu, et al., Phys. Plasmas, 23, No. 12, 123525 (2016).

    ADS  Google Scholar 

  18. T. Mehr, H. Arentz, P. Bickel, et al., IEEE Trans. Plasma Sci., 23, 324–329 (1995).

    ADS  Google Scholar 

  19. V. D. Bochkov, V. M. Dyagilev, V. G. Ushich, et al., IEEE Trans. Plasma Sci., 29, No. 5, 802–808 (2001).

    ADS  Google Scholar 

  20. N. V. Landl Y. D. Korolev, V. G. Geyman, et al., Russ. Phys. J., 62, No. 7, 1279–1288 (2019).

    Google Scholar 

  21. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., IEEE Trans. Plasma Sci., 43, No. 8, 2349–2353 (2015).

    ADS  Google Scholar 

  22. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 41, No. 8, 2087 (2013).

    ADS  Google Scholar 

  23. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 44, No. 1, 110 (2018).

    ADS  Google Scholar 

  24. A. V. Akimov, P. V. Logachev, V. D. Bochkov, et al., IEEE Trans. Dielectr. Electr. Insul., 17, No. 3, 716 (2010).

    Google Scholar 

  25. A. V. Akimov, V. E. Akimov, P. A. Bak, et al., Instrum. Exp. Tech., 55, No. 2, 218–224 (2012).

    Google Scholar 

  26. N. P. Kondrat’eva, N. N. Koval, Y. D. Korolev, and P. M. Schanin, J. Phys. D, 32, No. 6, 699 (1999).

    ADS  Google Scholar 

  27. D. L. Shmelev, S. A. Barengolts, and M. M. Tsventoukh, Plasma Sources Sci. Technol., 23, 062004 (2014).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 90–98, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Korolev, Y.D., Argunov, G.A. et al. Special Features of the Discharge Formation in the Trigger Unit Based on Breakdown Over the Semiconductor Surface in Sealed-Off Cold-Cathode Thyratron. Russ Phys J 63, 809–817 (2020). https://doi.org/10.1007/s11182-020-02102-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02102-7

Keywords

Navigation