Critical Grain Size at Meso-Level after Deformation of Polycrystalline Metals and Alloys in Low-Stability State

The paper deals with the dislocation and dislocation-disclination substructures of polycrystalline FCC alloys Cu–Al and Cu–Mn modified by tensile deformation. Observations are performed using the transmission electron microscopy. It is shown that the grain size of the alloy structure ranging from 10 to 240 μm, can serve as a critical parameter in the low-stability state during the deformation and transition from one stage of hardening to another. The dependences are obtained for the parameters describing the defect substructure and the mean grain size. These dependences are compared with the structure and phase composition of the alloys. The critical grain size of about 100 μm is found at a meso-level. When the grain size exceeds 100 μm, the main role in defect accumulation play intracrystalline processes. At stage II, the strain-hardening coefficient does not depend on the grain size of >100 μm and rapidly increases at a grain size of <100 μm.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E. V. Kozlov, N. A. Koneva, and N. A. Popova, Bulletin of the Russian Academy of Sciences: Physics, 73, No. 9, 1227–1232 (2009).

  2. 2.

    N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structure and Phase Transformations in Low-Stability States of Metal Systems Under Thermal Power Treatment [in Russian], NTL, Tomsk (2015).

  3. 3.

    A. I. Potekaev, V. A. Starenchenko, V. V. Kulagina, et al., Low-Stability State of Metal Systems [in Russian], A. I. Potekaev, ed., NTL, Tomsk (2012).

  4. 4.

    A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, Influence of Point and Planar Defects on Structure and Phase Transformations in Pretransition Low-Stability State of Metal Systems [in Russian], A. I. Potekaev, ed., NTL, Tomsk (2014).

  5. 5.

    A. I. Potekaev, I. I. Naumov, V. V. Kulagina, et al., Low-Stability Metallic-Based Nanostructures, A. I. Potekaev, ed., Scientific Technology Publishing House, Tomsk (2018).

  6. 6.

    A. M. Glezer, A. I. Potekaev, and A. O. Cheretaeva, Thermal and Time Stability of Amorphous Alloys, CRC Press, Taylor & Francis Group (2017).

  7. 7.

    N. A. Koneva, E. V. Kozlov, and A. N. Zhdanov, Bulletin of the Russian Academy of Sciences: Physics, 70, No. 4, 663–667 (2006).

  8. 8.

    N. A. Koneva, L. I. Trishkina, N. A. Popova, and E. V. Kozlov, Russ. Phys. J., 57, No. 2, 187–196 (2014).

    Google Scholar 

  9. 9.

    A. I. Potekaev, A. A. Klopotov, E. S. Marchenko, et al., Russ. Phys. J., 60, No. 9, 1577–1585 (2018).

  10. 10.

    A. Ustinov, D. Kopanitsa, A. Potekaev, and A. Klopotov, AIP Conf. Proc., 1683, 020233 (2015). https://doi.org/10.1063/1.4932923.

    Article  Google Scholar 

  11. 11.

    S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1970).

  12. 12.

    A. M. Glezer, E. V. Kozlov, N. A. Koneva, et al., Plastic Deformation of Nanostructured Materials, CRC Press, London, New York (2017).

  13. 13.

    S. Crampin, D. D. Vedensky, and R. Monnier, Phil. Mag. A, 67, No. 6, 1447–1457 (1993).

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Koneva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 58–63, May, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koneva, N.A., Potekaev, A.I., Trishkina, L.I. et al. Critical Grain Size at Meso-Level after Deformation of Polycrystalline Metals and Alloys in Low-Stability State. Russ Phys J 63, 773–778 (2020). https://doi.org/10.1007/s11182-020-02097-1

Download citation

Keywords

  • metals
  • alloys
  • deformation
  • low-stability state
  • grain size