The paper presents theoretical and experimental results of studying the grain structure formation of the Ni3Al intermetallic compound produced by self-propagating high-temperature synthesis (SHS) under the pressure and volume exothermic reaction conditions, in a stoichiometric powder mixture. It is shown that the grain size in the SHS-produced intermetallic compound depends on both the preliminary load on the powder mixture and the SHS product deformation during its crystallization. It is found that the increased pressure on the initial powder mixture reduces the grain size in the bulk of the SHS-produced intermetallic compound, whereas its deformation provides a manifold decrease of the grain size at a simultaneous averaging of its distribution in the bulk of the SHS product obtained under pressure.
Similar content being viewed by others
References
N. S. Stoloff, C. T. Liu, and S. C. Deevi, Intermetallics, 8, No. 9–11, 1313–1320 (2000).
V. K. Sikka, S. C. Deevi, S. Viswanathan, et al., Intermetallics, 8, No. 9–11, 1329–1337 (2000).
E. M. Schulson, T. P. Weihs, D. V. Viens, and I. Baker, Acta Metall., No. 33, 1587–1591 (1985).
K. Aoki and O. Izumi, J. Jpn. I. Met., 43, 1190–1196 (1979).
T. Feng, S. P. Li, and H. L. Luo, Acta Metall. Sin., No. 31, 547–551 (2002).
A. F. Giamei and D. L. Anton, Metall. Trans. A, 16, No. 11, 1997–2005 (1985).
P. Jozwik, W. Polkowski, and Z. Bojar, Materials, 8, 2537–2568 (2015).
A. Antolak-Dudka, M. Krasnowski, and T. Kulik, Intermetallics, 42, 41–44 (2013).
M. Demura, Y. Suga, O. Umezawa, et al., Intermetallics, 9, 157–167 (2001).
W. Polkowski, P. Jozwik, and Z. Bojar, Mater. Lett., 139, 46–49 (2015).
K. Naplocha, in: Intermetallic Matrix Composites, Woodhead Publishing, Oxford (2018), pp. 203–220.
A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, Metallurgy and Mechanical Engineering: A Quarterly Specialized Newsletter [in Russian], Mashinostroenie, Moscow (2007).
V. E. Ovcharenko, O. V. Lapshin, and I. S. Ramazanov, Combust. Explo. Shock., 42, No. 3, 302–308 (2006).
V. E. Ovcharenko, E. N. Boyangin, M. M. Myshlyaev, et al., Phys. Solid State, 57, No. 7, 1293–1299 (2015).
G. Gottstein, Physical Foundations of Materials Science, Springer, Berlin (2004).
G. V. Avvakumov, S. Mamoru, and N. V. Kosova, Soft Mechanical Synthesis: A Basic for New Chemical Technologies, Kluwer Academic Publishers, Boston MA (2002).
T. H. Laby and G. W. Kaye, Tables of Physical and Chemical Constants, Longman, New York (1995).
H. Li, L. Zheng, H. Zhang, et al., Procedia Eng., No. 27, 1187–1192 (2012).
A. S. Mukasyan and C. E. Shuk, Int. J. Self-Propag. High-Temp. Synth., 26, No. 3, 145–165 (2017).
V. E. Ovcharenko and M. V. Fedorishcheva, Russ. Phys. J., 41, No. 7, 636–638 (1999).
P. M. Bazhin, A. M. Stolin, and M. I. Alymov, Nanotechnologies in Russia, 9, No. 11–12, 583–600 (2014).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 50–57, May, 2020.
Rights and permissions
About this article
Cite this article
Ovcharenko, V.E., Lapshin, O.V., Akimov, K.O. et al. Grain Structure Formation in Ni3Al Intermetallic Compound Synthesized Under High-Temperature and Pressure Conditions. Russ Phys J 63, 765–772 (2020). https://doi.org/10.1007/s11182-020-02096-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11182-020-02096-2