Skip to main content
Log in

Grain Structure Formation in Ni3Al Intermetallic Compound Synthesized Under High-Temperature and Pressure Conditions

  • Published:
Russian Physics Journal Aims and scope

The paper presents theoretical and experimental results of studying the grain structure formation of the Ni3Al intermetallic compound produced by self-propagating high-temperature synthesis (SHS) under the pressure and volume exothermic reaction conditions, in a stoichiometric powder mixture. It is shown that the grain size in the SHS-produced intermetallic compound depends on both the preliminary load on the powder mixture and the SHS product deformation during its crystallization. It is found that the increased pressure on the initial powder mixture reduces the grain size in the bulk of the SHS-produced intermetallic compound, whereas its deformation provides a manifold decrease of the grain size at a simultaneous averaging of its distribution in the bulk of the SHS product obtained under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Stoloff, C. T. Liu, and S. C. Deevi, Intermetallics, 8, No. 9–11, 1313–1320 (2000).

    Google Scholar 

  2. V. K. Sikka, S. C. Deevi, S. Viswanathan, et al., Intermetallics, 8, No. 9–11, 1329–1337 (2000).

    Google Scholar 

  3. E. M. Schulson, T. P. Weihs, D. V. Viens, and I. Baker, Acta Metall., No. 33, 1587–1591 (1985).

    Google Scholar 

  4. K. Aoki and O. Izumi, J. Jpn. I. Met., 43, 1190–1196 (1979).

    Google Scholar 

  5. T. Feng, S. P. Li, and H. L. Luo, Acta Metall. Sin., No. 31, 547–551 (2002).

    Google Scholar 

  6. A. F. Giamei and D. L. Anton, Metall. Trans. A, 16, No. 11, 1997–2005 (1985).

    Google Scholar 

  7. P. Jozwik, W. Polkowski, and Z. Bojar, Materials, 8, 2537–2568 (2015).

    ADS  Google Scholar 

  8. A. Antolak-Dudka, M. Krasnowski, and T. Kulik, Intermetallics, 42, 41–44 (2013).

    Google Scholar 

  9. M. Demura, Y. Suga, O. Umezawa, et al., Intermetallics, 9, 157–167 (2001).

    Google Scholar 

  10. W. Polkowski, P. Jozwik, and Z. Bojar, Mater. Lett., 139, 46–49 (2015).

    Google Scholar 

  11. K. Naplocha, in: Intermetallic Matrix Composites, Woodhead Publishing, Oxford (2018), pp. 203–220.

    Google Scholar 

  12. A. P. Amosov, I. P. Borovinskaya, and A. G. Merzhanov, Metallurgy and Mechanical Engineering: A Quarterly Specialized Newsletter [in Russian], Mashinostroenie, Moscow (2007).

    Google Scholar 

  13. V. E. Ovcharenko, O. V. Lapshin, and I. S. Ramazanov, Combust. Explo. Shock., 42, No. 3, 302–308 (2006).

    Google Scholar 

  14. V. E. Ovcharenko, E. N. Boyangin, M. M. Myshlyaev, et al., Phys. Solid State, 57, No. 7, 1293–1299 (2015).

    ADS  Google Scholar 

  15. G. Gottstein, Physical Foundations of Materials Science, Springer, Berlin (2004).

    Google Scholar 

  16. G. V. Avvakumov, S. Mamoru, and N. V. Kosova, Soft Mechanical Synthesis: A Basic for New Chemical Technologies, Kluwer Academic Publishers, Boston MA (2002).

    Google Scholar 

  17. T. H. Laby and G. W. Kaye, Tables of Physical and Chemical Constants, Longman, New York (1995).

    MATH  Google Scholar 

  18. H. Li, L. Zheng, H. Zhang, et al., Procedia Eng., No. 27, 1187–1192 (2012).

  19. A. S. Mukasyan and C. E. Shuk, Int. J. Self-Propag. High-Temp. Synth., 26, No. 3, 145–165 (2017).

    Google Scholar 

  20. V. E. Ovcharenko and M. V. Fedorishcheva, Russ. Phys. J., 41, No. 7, 636–638 (1999).

    Google Scholar 

  21. P. M. Bazhin, A. M. Stolin, and M. I. Alymov, Nanotechnologies in Russia, 9, No. 11–12, 583–600 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Ovcharenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 50–57, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharenko, V.E., Lapshin, O.V., Akimov, K.O. et al. Grain Structure Formation in Ni3Al Intermetallic Compound Synthesized Under High-Temperature and Pressure Conditions. Russ Phys J 63, 765–772 (2020). https://doi.org/10.1007/s11182-020-02096-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02096-2

Keywords

Navigation