Structure and Properties of ZrC/C Heteromodulus High-Temperature Composites

The influence of free carbon on densification and mechanical properties of ZrC/C heteromodulus composites is studied. It is shown that free carbon in the amount of up to 3 vol % decreases residual porosity in the heteromodulus composites, while the content of free carbon of more than 3 vol % increases it. Furthermore, increased carbon content in ZrC/C composites improves the sintered material toughness. In particular, for pure ZrC KIc = 4.3 MPa·m1/2, and for the composite with 3 vol.% carbon KIc = 7 MPa·m1/2. The lowest fracture toughness is demonstrated by the composite with 15 vol.% carbon KIc = 5.3 MPa·m1/2.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E. P. Simonenko et al., Russ. J. Inorgan. Chem., 58, No. 14, 1669–1693 (2013).

    Google Scholar 

  2. 2.

    D. Sciti, S. Guicciardi, and M. Nygren, Scripta Mater., 59, No. 6, 638–641 (2008).

    Google Scholar 

  3. 3.

    E. Min-Haga and W. D. Scott, J. Mater. Sci., 23, No. 8, 2865–2870 (1988).

    ADS  Google Scholar 

  4. 4.

    K. Schönfeld, H. P. Martin, and A. Michaelis, J. Adv. Ceram., 6, No. 2, 165– 175 (2017).

    Google Scholar 

  5. 5.

    J. Li et al., Mater. Design, 104, 43–50 (2016).

    ADS  Google Scholar 

  6. 6.

    M. E. Launey and R. O. Ritchie, Adv. Mater., 21, No. 20, 2103–2110 (2009).

    Google Scholar 

  7. 7.

    T. Wei et al., Mater. Lett., 62, No. 4–5, 641–644 (2008).

    Google Scholar 

  8. 8.

    J. Cook et al., Soc. Lond. A. Math. Phys. Sci., 282, No. 1390, 508 (1964).

    Google Scholar 

  9. 9.

    F. Rebillat, J. Lamon, and A. Guette, Acta Mater., 48, No. 18–19, 4609–4618 (2000).

    Google Scholar 

  10. 10.

    N. Carrère, E. Martin, and J. Lamon, Composites. A. Appl. Sci. Manufactur., 31, No. 11, 1179–1190 (2000).

    Google Scholar 

  11. 11.

    Z. Kovziridze et al., J. Eur. Ceram. Soc., 31, No. 10, 1921–1926 (2011).

    Article  Google Scholar 

  12. 12.

    S. Pompidou and J. Lamon, Composit. Sci. Technol., 67, No. 10, 2052–2060 (2007).

    Article  Google Scholar 

  13. 13.

    I. L. Shabalin et al., Adv. Appl. Ceram., 109, No. 7, 405–415 (2010).

    Article  Google Scholar 

  14. 14.

    L. A. Gömze and L. N. Gömze, Epa.-J. Silic. Based Compos. Mater., 62, 98–101 (2010).

    Google Scholar 

  15. 15.

    S. E. Landwehr et al., Mater. Sci. Eng. A, 497, No. 1–2, 79–86 (2008).

    Article  Google Scholar 

  16. 16.

    S. Sagdic et al., TMS Annu. Meet., 1, 569–575 (2012).

    ADS  Google Scholar 

  17. 17.

    J. R. Cost, K. R. Janowski, and R. C. Rossi, Philos. Mag. A. J. Theor. Exp. and Appl. Phys., 17, No. 148, 851– 854 (1968).

    Google Scholar 

  18. 18.

    L. Zhao et al., Int. J. Refractory Metals and Hard Mater., 29, No. 4, 516–521 (2011)..

    Article  Google Scholar 

  19. 19.

    X. G. Wang et al., J. Eur. Ceram. Soc., 31, No. 6, 1103–1111 (2011).

    Article  Google Scholar 

  20. 20.

    K. Niihara, R. Morena, and D. P.H. Hasselman, J. Mater. Sci. Lett., 1, No. 1, 13–16 (1982).

    Google Scholar 

  21. 21.

    J. H. Kim, M. Seo, and S. Kang, Int. J. Refractory Metals and Hard Mater., 35, 49–54 (2012).

    Google Scholar 

  22. 22.

    S. Guo, J. Eur. Ceram. Soc., 34, No. 3, 621–632 (2014).

    Google Scholar 

  23. 23.

    S. M. Emami et al., Ceram. Int., 43, No. 1, 111–115 (2017).

    MathSciNet  Google Scholar 

  24. 24.

    X. Cai et al., J. Alloys Compounds, 728, 788–796 (2017).

    Google Scholar 

  25. 25.

    J. Maj et al., Mater. Sci. Eng. A, 715, 154–162 (2018).

    Google Scholar 

  26. 26.

    C. Ferraro et al., Acta Mater., 144, 202–215 (2018).

    Google Scholar 

  27. 27.

    C. Han et al., Mater. Design, 141, 256–266 (2018).

    Google Scholar 

  28. 28.

    L. L. Shaw, H. Luo, and Y. Zhong, Mater. Sci. Eng. A, 537, 39–48 (2012).

    Google Scholar 

  29. 29.

    M. S. Asl et al., Mater. Sci. Eng. A, 716, 99–106 (2018).

    Google Scholar 

  30. 30.

    Q. Wen et al., Mater. Sci. Eng. A, 701, 338–343 (2017)..

    Google Scholar 

  31. 31.

    E. O. Hall, Nature, 173, No. 4411, 948–949 (1954).

    ADS  Google Scholar 

  32. 32.

    A. V. Burlachenko, Yu. A. Mirovoy, and E. S. Dedova, Russ. Phys. J., 62, No. 8, 1438–1444 (2019).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. А. Mirovoy.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 38–44, May, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirovoy, Y.А., Burlachenko, A.G. & Buyakova, S.P. Structure and Properties of ZrC/C Heteromodulus High-Temperature Composites. Russ Phys J (2020). https://doi.org/10.1007/s11182-020-02094-4

Download citation

Keywords

  • ceramic composites
  • carbides
  • toughness
  • hardness
  • elasticity
  • heterostructures