Relation of the Lattice and Deformation Characteristics at Plastic Flow of Metals

A new approach is suggested for explanation of autowave processes during plastic deformation of metals. It is based on the postulate that a quasiparticle corresponds to a localized flow autowave. Characteristics of the quasiparticle are determined, and a number of consequences from the postulate are considered. The relations have been established for the processes on micro- and macro-level in the course of plastic deformation.

This is a preview of subscription content, log in to check access.


  1. 1.

    J. Pelleg, Mechanical Properties of Materials, Springer, Dordrecht (2013).

    Google Scholar 

  2. 2.

    G. Haken, Information and self-organization. A Macroscopic Approach to Complex Systems, URSS, Moscow (2014).

  3. 3.

    L. B. Zuev, Autowave Plasticity. Localization and Collective Modes [in Russian], Fizmatlit, Moscow (2018).

    Google Scholar 

  4. 4.

    J. P. Billingsley, Int. J. Solids Struct., 38, No. 12, 4221–4234 (2001).

    Google Scholar 

  5. 5.

    L. B. Zuev and S. A. Barannikova, Russ. Phys. J., 62, No. 8, 1338–1342 (2019).

    Google Scholar 

  6. 6.

    R. E. Newnham, Properties of Materials, Oxford University Press, Oxford (2005).

    Google Scholar 

  7. 7.

    A. Cracknell and K. Wong, Fermi Surface [Russian translation], Atomizdat, Moscow (1978).

    Google Scholar 

  8. 8.

    V. I. Al’shits and V. L. Indenbom, in: Dislocations in Solids, Elsevier, Amsterdam (1986), pp. 43–111.

    Google Scholar 

  9. 9.

    L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  10. 10.

    J. Kay and T. Lebi, Tables of Physical and Chemical Constants [Russian translation], State Publishing House of Physical and Mathematical Literature (1962).

  11. 11.

    D. Hudson, Statistics for Physicists [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  12. 12.

    N. B. Brandt and V. A. Kulbachinsky, Quasiparticles in Condensed Matter Physics [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  13. 13.

    T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  14. 14.

    E. V. Darinskaya, A. A. Urusovskaya, V. I. Alshits, et al., Fiz. Tverd. Tela, 25, No. 12, 3636–3641 (1983).

    Google Scholar 

  15. 15.

    E. M. Morozov, L. S. Polak, and Ya. B. Friedman, Dokl. Akad. Nauk SSSR, 146, No. 3, 537–540 (1964).

    Google Scholar 

  16. 16.

    I. A. Miklashevich, Prikl. Mekh. Tekh. Fiz. 44, No. 2, 123–131 (2003).

    MathSciNet  Google Scholar 

  17. 17.

    Y. Imri, Introduction to Mesoscopic Physics [Russian translation], Fizmatlit, Moscow (2002).

    Google Scholar 

  18. 18.

    M. Zaiser, Adv. Phys., 55, Nos. 1–2, 185–245 (2006).

    ADS  Google Scholar 

  19. 19.

    V. V. Kadomtsev, Dynamics and Information, Editorial Office of the Journal “Usp. Fiz. Nauk,” Moscow (1997).

  20. 20.

    L. B. Zuev and S. A. Barannikova, Crystals, 9, No. 9, 458–488 (2019).

    Google Scholar 

  21. 21.

    L. B. Zuev, Phys. Wave Phenom., 20, No. 3, 166–173 (2012).

    ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. B. Zuev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 25–31, May, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuev, L.B., Kolosov, S.V. & Nadezhkin, M.V. Relation of the Lattice and Deformation Characteristics at Plastic Flow of Metals. Russ Phys J 63, 738–745 (2020).

Download citation


  • lattice
  • deformation
  • localization
  • autowaves
  • self-organization
  • quasiparticles