Skip to main content
Log in

Influence of Polycrystalline Structure on Dynamic Strength and Fracture Character of an Aluminum Alloy in Different Welding Joint Zones

  • Published:
Russian Physics Journal Aims and scope

Plastic strain localization and fracture in the nugget and thermo-mechanically affected zone of a friction stir welded Al6061-T6 alloy are numerically investigated. Dynamic boundary-value problems are solved by the finite-difference method. A procedure for generating ordered and disordered polycrystalline microstructures experimentally observed in different weld zones is developed. A physically-based relaxation constitutive equation is developed to describe dynamic thermomechanical response of the aluminum alloy. Calculations of microstructure tension in polycrystals are performed. The effect of the degree of order and strain rate on the material dynamic strength and fracture are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Singh, J. Mater. Res. Technol., (2020). https://doi.org/10.1016/j.jmrt.2020.01.008.

  2. R. S. Mishra and Z. Y. Ma, Mat. Sci. Eng. R., 50, 1–78 (2005).

    Google Scholar 

  3. C. B. Fuller, M. W. Mahoneya, M. Calabresea, et al., Mat. Sci. Eng. A-Struct., 527, 2233–2240 (2010).

    Google Scholar 

  4. S. Mironov, K. Masaki, Y. S. Sato, et al., Scripta Mater., 67, 983–986 (2012).

    Google Scholar 

  5. H. J. Liu, J. C. Hou, and H. Guo, Mater. Design, 50, 872–878 (2013).

    Google Scholar 

  6. O. Lorraina, V. Favier, H. Zahrounic, et al., J. Mater. Process. Tech., 210, 603– 609 (2010).

    Google Scholar 

  7. M. Dumont et al., Acta Mater., 54, 4793–4801 (2006).

    Google Scholar 

  8. M. F. X. Muthua and V. Jayabalan, J. Mat. Process. Tech., 217, 105–113 (2015).

    Google Scholar 

  9. H. J. Aval, Mater. Design, 67, 413–421 (2015).

    Google Scholar 

  10. H. M. Rao, W. Yuan, and H. Badarinarayan, Mater. Design, 66, 235–245 (2015).

    Google Scholar 

  11. M. H. Shojaeefard, Mater. Design, 64, 660–666 (2014).

    Google Scholar 

  12. A. Simar, Prog. Mater. Sci., 57, 95–183 (2012).

    Google Scholar 

  13. A. Timesli, B. Braikat, H. Lahmam, et al., Eng. Anal. Bound. Elem., 50, 372– 380 (2015).

    Google Scholar 

  14. H. Su, C. S. Wu, A. Pittner, et al., Energy, 77, 720–731 (2014).

    Google Scholar 

  15. G. Q. Chen, Comp. Mater. Sci., 79, 540–546 (2013).

    Google Scholar 

  16. S. D. Ji, Comp. Mater. Sci., 63, 218–226 (2012).

    Google Scholar 

  17. W. Pan, Int. J. Plasticity, 48, 189–204 (2013).

    Google Scholar 

  18. H. H. Cho, Acta Mater., 61, 2649–2661 (2013).

    Google Scholar 

  19. R. S. Saluja, R. G. Narayanan, and S. Das, Comp. Mater. Sci., 58, 87–100 (2012).

    Google Scholar 

  20. K. L. Nielsen, Int. J. Solids Struct., 47, 2359–2370 (2010).

    Google Scholar 

  21. R. Citarella, P. Carlone, M. Lepore, et al., Adv. Eng. Softw. Workst., 80, 47–57 (2015).

    Google Scholar 

  22. W. Lee, Int. J. Plasticity, 25, 1626–1654 (2009).

    Google Scholar 

  23. D. E. Boyce, P. R. Dawson, B. Sidle, et al., Comp. Mater. Sci., 38, 158–175 (2006).

    Google Scholar 

  24. V. A. Romanova, Phys. Mesomech., 22, No. 4, 296–306 (2019).

    Google Scholar 

  25. E. S. Emelianova, V. A. Romanova, R. R. Balokhonov, et al., Russ. Phys. J., 62, No. 9, 1539–1552 (2019).

    Google Scholar 

  26. R. R. Balokhonov, V. A. Romanova, S. Schmauder, et al., Theor. Appl. Frac. Mec., 101, 342–355 (2019).

    Google Scholar 

  27. R. Balokhonov, Phys. Mesomech., 23, No. 2, 296–306 (2020).

    Google Scholar 

  28. A. P. Babichev, N. A. Babushkina, A. M. Bratkovckii, et al., Physical Quantities. Reference book [in Russian] (Ed. I. S. Grigorieva and E. Z. Melikhova), Energoizdat, Moscow (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Balokhonov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 10–18, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balokhonov, R.R., Romanova, V.A., Sergeev, M.V. et al. Influence of Polycrystalline Structure on Dynamic Strength and Fracture Character of an Aluminum Alloy in Different Welding Joint Zones. Russ Phys J 63, 721–730 (2020). https://doi.org/10.1007/s11182-020-02090-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02090-8

Keywords

Navigation