Skip to main content

Advertisement

Log in

Structure and Properties of Titanium Aluminum Alloy Produced by Friction Stir Welding

  • Published:
Russian Physics Journal Aims and scope

The paper deals with the fabrication of lap joints of titanium ОТ4-1 alloy and aluminum AlMg5 alloy sheets by means of friction stir welding (FSW). The X-ray diffraction and energy dispersive X-ray analyses show that in the FSW zone, the formation of four intermetallic compounds occurs, viz. TiAl3, TiAl, TiAl2 and Ti3Al. It is found that the lower plunge depth into the substrate and the increased FSW rate do not prevent the intermetallics formation. The microhardness distribution in the FSW joint is non-uniform and its maximum value reaches 4 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. D. Saprygin, Eh. S. Karakozov, and Yu. I. Bereznikov, Svarochnoe proizvodstvo, 22, 29–31 (1975).

  2. Y. Wei, W. Aiping, and Z. Guisheng, Rare Metal Mat. Eng., 36, 700–704 (2007).

    Google Scholar 

  3. Z. Pengfei and K. Hui, J. Mater. Eng., 21, 25–28 (2001). [in Chinese]

  4. N. Jiaming, L. Liqun, and C. Yanbin, Chin. J. Nonferrous Met., 17, 617–622 (2007).

    Article  Google Scholar 

  5. X. Guoqing, Z. Gang, and N. Jitai, Welding, 3, 21–24 (2000).

    Google Scholar 

  6. A. Fuji, K. Ikeuchi, Y. S. Sato, and H. Kokawa, Sci. Technol. Weld. Join., 9, 507–512 (2004).

    Article  Google Scholar 

  7. M. Aonuma and K. Nakata, Mater. Trans., 52, No. 5, 948–952 (2011).

    Article  Google Scholar 

  8. B. Li, Z. Zhang, Y. Shen, et al., Mater. Design, 53, 838–848 (2014).

    Article  Google Scholar 

  9. Z. W. Chen and S. Yazdanian, Mat. Sci. Eng. A-Struct., 634, 37–45 (2015).

    Article  Google Scholar 

  10. J.-W. Choi, H. Liu, and H. Fujii, Mat. Sci. Eng. A-Struct., 730, 168–176 (2018).

    Article  Google Scholar 

  11. A. Fuji, Sci. Technol. Weld. Join., 6, 413–416 (2009).

    Google Scholar 

  12. Y.-C. Kim and A. Fuji, Sci. Technol. Weld. Join., 7, No. 3, 149–154 (2002).

    Article  Google Scholar 

  13. C. J. Hsu, C. Y. Chang, P. W. Kao, et al., Acta Mater., 54, 5241–5249 (2006).

    Article  Google Scholar 

  14. G. Wang and M. Dahms, JOM, 45, 52–56 (1993).

    Article  ADS  Google Scholar 

  15. J. C. Rawers and W. R. Wrzesinski, J. Mater. Sci., 27, 2877–2886 (1992).

    Google Scholar 

  16. G. X. Wang and M. Dahms, Powder Metall. Int., 24, 219–225 (1992).

    Google Scholar 

  17. G. X. Wang and M. Dahms, Scripta Mater., 26, 717–722 (1992).

    Article  ADS  Google Scholar 

  18. Y. C. Chen and K. Nakata, Mater. Design, 30, 469–474 (2006).

    Article  Google Scholar 

  19. I. I. Kornilov, Titanium. Sources, Compositions, Properties, Metal Chemistry and Applications [in Russian], Nauka, Moscow (1975), pp. 180–183.

  20. A. I. Amirov, V. A. Beloborodov, A. N. Ivanov, and L. L. Zhukov, AIP Conf. Proc., 2051, 020013 (2018).

    Article  Google Scholar 

  21. Y. Wei, J. Li, J. Xiong, et al., Mater. Charact., 71, 1–5 (2012).

    Article  Google Scholar 

  22. Y. S. Sato, M. Urata, H. Kokawa, and K. Ikeda, Mat. Sci. Eng. A-Struct., 354, No. 1–2, 298–305 (2003).

    Article  Google Scholar 

  23. C. D. Donne, R. Braun, G. Staniek, et al., Z. Metallkd, 29, No. 29, 609–617 (1998).

    Google Scholar 

  24. E. B. F. Lima, J. Wegener, C. D. Donne, et al., Z. Metallkd, 94, No. 8, 908–915 (2003).

    Article  Google Scholar 

  25. U. R. Kattner, J. C. Lin, and Y. A. Chang, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 23A, 2081–2090 (1992).

    Article  ADS  Google Scholar 

  26. M. Sujata, S. Bhargava, and S. Sangal, J. Mater. Sci., 16, 1175–1178 (1997).

    Google Scholar 

  27. G. X. Wang and M. Dahms, J. Mater. Sci., 29, 1847–1853 (1994).

    Google Scholar 

  28. T. Klassen, M. Oehring, and R. Bormann, J. Mater. Sci., 9, 47–52 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Eliseev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 107–115, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliseev, A.A., Fortuna, S.V., Amirov, A.I. et al. Structure and Properties of Titanium Aluminum Alloy Produced by Friction Stir Welding. Russ Phys J 63, 467–475 (2020). https://doi.org/10.1007/s11182-020-02058-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02058-8

Keywords

Navigation