Skip to main content

Advertisement

Log in

Modernization of the Thl-100 Laser System to Produce Powerful Terahertz Radiation

  • Published:
Russian Physics Journal Aims and scope

This paper presents the results of research on parameters of the THL-100 hybrid laser system of the visible spectrum with a view to modernizing it, in order to achieve the boundary parameters required for the pumping of non-linear crystals and production of the unprecedented THz radiation powers. The laser system consists of the Start-480M Ti:Sa starting complex and photodissociation XeF(C-A) amplifier with a 24 cm aperture. After modernization, the starting complex provides the spectrally limited radiation pulse of 60 fs at the first harmonic (950 nm) at energy of 25 mJ and 50 fs at the second harmonic (475 nm) at energy of 10 mJ. In the case of the positively chirped pulse with duration of 50 ps, the energy at the second harmonic is 3 mJ. When amplifying the negatively chirped radiation pulse in the XeF(C-A) amplifier at the wavelength of 475 nm with duration of 1.8 ps, the power of 40 TW is reached, and the maximum energy is 2 J. When amplifying the positively chirped pulse with duration of 50 ps, the highest energy of 3 J is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Stepanov, S. Henin, Y. Petit, et al., Appl. Phys. B., 101, 11–14 (2010).

    Article  ADS  Google Scholar 

  2. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, et al., Opt. Lett., 37, Issue 4, 557– 559 (2012).

  3. M. C. Hoffmann and J. A. Fülöp, J. Phys. D: Appl. Phys., 44, 083001 (2011).

    Article  ADS  Google Scholar 

  4. X.-C. Zhang and J. Xu, Introduction in THz Wave Photonics, Springer, N. Y. (2010).

    Book  Google Scholar 

  5. Y. J. Ding, J. Opt. Soc. Am. B., 31, Issue 11, 2696–2711 (2014).

  6. V. D. Antsygin, A. A. Mamrashev, N. A. Nikolaev, et al., Opt. Commun., 309, 333–337 (2013).

    Article  ADS  Google Scholar 

  7. V. D. Antsygin, V. F. Losev, A. A. Mamrashev, et al., Optoelectron.Instrument.Proc., 52, Issue 4, 374-380 (2016).

    Article  Google Scholar 

  8. Yu. M. Andreev, M. Naftaly, J. F. Molloy, et al., Laser Phys. Lett., 12, Issue 11, 115402 (2015).

    Article  ADS  Google Scholar 

  9. V. D. Antsygin, V. F. Losev, A. A. Mamrashev et al., Optoelectron.Instrument.Proc., 52, Issue 4, 374–380 (2016).

    Article  Google Scholar 

  10. D. M. Lubenko, V. F. Losev, Yu. M. Andreev, et al., Russ. Phys. J. [in Russian], 59, Issue 7/2, 144–148 (2016).

  11. N. G. Kononova, A. E. Kokh, K. A. Kokh, et al., Russ. Phys. J., 59, Issue 8, 1307– 1315 (2016).

  12. D. M. Lubenko, V. F. Losev, Yu. M. Andreev, et al., Bull. Russ. Acad. Sci. Phys., 83, Issue 3, 256–260 (2019).

  13. N. A. Nikolaev, Yu. M. Andreev, N. G. Kononova, et al., Quantum Electronics, 48, Issue 1, 19–21 (2018).

    Google Scholar 

  14. D. M. Lubenko, V. F. Losev, Yu. M. Andreev, G. V. Lanskii, Bull. Russ. Acad. Sci. Phys., 81, Issue 10, 1239–1243 (2017).

  15. S. V. Alekseev, A. I. Aristov, N. G. Ivanov, et al., Quantum Electronics, 42, Issue 5, 377–378 (2012).

    Google Scholar 

  16. S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, et al., Russ. Phys. J. [in Russian], 57, Issue 12/2, 101–105 (2014).

  17. V. F. Losev, S. V. Alekseev, N. G. Ivanov, et al., Russ. Phys. J. [in Russian], 55, Issue 11/3, 277–281 (2012).

  18. S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, et al., Quantum Electronics, 43, Issue 3, 190–200 (2013)

  19. S. V. Alekseev, A. I. Aristov, N. G. Ivanov, et al., Laser and Particle Beams, 31, Issue 1, 17–21 (2013).

    Google Scholar 

  20. S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, et al., Russ. Phys. J., 58, Issue 8, 1087–1092 (2015).

  21. N. G. Ivanov, M. V. Ivanov, V. F. Losev, A. G. Yastremskii, Russ. Phys. J., 59, Issue 7, 984–993 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Alekseev, Yu. M. Andreev, V. F. Losev or D. M. Lubenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 178–182, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, S.V., Andreev, Y.M., Losev, V.F. et al. Modernization of the Thl-100 Laser System to Produce Powerful Terahertz Radiation. Russ Phys J 62, 2151–2155 (2020). https://doi.org/10.1007/s11182-020-01960-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01960-5

Keywords

Navigation