Skip to main content
Log in

Study of Characteristics of the Cold Atmospheric Plasma Source Based on a Piezo Transformer

  • Published:
Russian Physics Journal Aims and scope

In this paper, we study a compact source of low-temperature cold atmospheric plasma based on a piezoelectric transformer used as a high-voltage source. This device can produce a direct piezo-discharge in the atmosphere, a classical dielectric barrier discharge, and a discharge in a noble gas flow. We have estimated the rotational and vibrational temperatures of the N2 ions and the electron temperature in the discharge from the emission spectra for different modes of source operation. When the source operated with loads of two types (metal and liquid loads), the electric field strength distribution near the discharge gap was measured with a probe operating on the basis of the Pockels effect. The possibility of application of this device for electromagnetic field impact on biological objects and plasma-activated media is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. K. Bobrov, N. G. Gusein-zade, A. A. Rukhadze, and Yu. V. Yurgelenas, Physical Models and Mechanisms of the Electric Breakdown of Gases [in Russian], Moscow State University Publishing House, Moscow (2011).

  2. P. J. Bruggeman, F. Iza, and R. Brandenburg, Plasma Source Sci. Technol., 26, No. 12, 123002 (2017).

  3. S. Samukawa, M. Hory, S. Rauf, et al., J. Phys. D, 45, No. 25, 253001 (2012).

  4. I. Adamovich, S. D. Baalrud, A. Bogaerts, et al., J. Phys. D, 50, No. 32, 323001 (2017).

  5. A. A. Fridman and G. G. Friedman, Plasma Medicine, John Wiley & Sons, Chichester (2013).

  6. T. Von Woedtke, S. Reuter, K. Masur, et al., Phys. Rep., 530, No. 4, 291–320 (2013).

    Article  ADS  Google Scholar 

  7. P. K. Chu and X. P. Lu, eds., Low-Temperature Plasma Technology: Methods and Applications, CRC Press (2013).

  8. L. V. Kolik et al., Patent RU No. 181459, Bul. No. 20 (September 4, 2018).

  9. A. Vazquez Carazo, Actuators, 5, No. 2, 12 (2016).

    Article  Google Scholar 

  10. M. J. Johnson, R. B. David, T. B. Petrova, et al., IEEE Trans. Plasma Sci., 47, No. 1, 434–444 (2018).

    Article  ADS  Google Scholar 

  11. S. Iséni, arXiv preprint arXiv:1709.03109 (2017).

  12. I. Yu. Denisyuk, Yu. É. Burunkova, and T. V. Smirnova, Opt. Zh., 74, No. 2, 63–69 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Artem’ev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 105–111, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artem’ev, K.V., Bogachev, N.N., Gusein-zade, N.G. et al. Study of Characteristics of the Cold Atmospheric Plasma Source Based on a Piezo Transformer. Russ Phys J 62, 2073–2080 (2020). https://doi.org/10.1007/s11182-020-01948-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01948-1

Keywords

Navigation