Skip to main content
Log in

Mechanism of High-Efficiency Electron Beam Generation in a High-Voltage Discharge in Helium and Its Mixtures with Oxygen and Nitrogen

  • Published:
Russian Physics Journal Aims and scope

The results of investigation of the current-voltage characteristics (CVCs) and electron beam generation efficiency in continuous discharges in helium, its mixtures with oxygen and nitrogen, as well as in pure oxygen and helium are presented. Peculiarities of CVCs are singled out and interpreted in terms of a changed role of the principal emission mechanisms with an increase in the voltage. It is shown that a high efficiency of the electron beam generation of more than 80% can be achieved in glow discharges in helium, oxygen, and nitrogen. In helium, it is provided by the predominating photoemission, while in oxygen and nitrogen and their mixtures with helium – mainly by the kinetic emission under the impact of fast heavy particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Moskalev, Discharge in a Hollow Cathode [in Russian], Energiya, Moscow (1969). BIII

  2. J. J. Rocca, J. D. Meyer, M. R. Farrell, and G. J. Collins, J. Appl. Phys., 56, No. 3, 790–797 (1984).

    Article  ADS  Google Scholar 

  3. A. P. Bokhan, P. A. Bokhan, and Dm. E. Zakrevsky, Plasma Physics Reports, 32, 549–562 (2006).

    Article  ADS  Google Scholar 

  4. P. A. Bokhan, and Dm. E. Zakrevsky, Plasma Physics Reports, 32, Iss. 9, 786–796 (2006).

    Article  ADS  Google Scholar 

  5. A. I. Golovin and A. I. Shloydo, Advances in Applied Physics, 4, No. 5, 439–448 (2016).

    Google Scholar 

  6. K. N. Ulyanov, High Temperature, 43, 641–652 (2005).

    Article  Google Scholar 

  7. A. I. Golovin, E. K. Egorova, and A. I. Shloydo, Tech. Phys., 59, Iss. 10, 1445 (2014).

    Article  Google Scholar 

  8. A. R. Sorokin, Physics-Uspekhi, 188, Iss. 12, 1354–1360 (2018).

    Google Scholar 

  9. G. V. Kolbychev and I. V. Ptashnik, ZTF Pis'ma, 11, 1106–1110 (1985).

    Google Scholar 

  10. P. A. Bokhan, Physics-Uspekhi, 188, Iss. 12, 1361–1366 (2018).

    Google Scholar 

  11. L. Xu, A. V. Khrabrov, I. D. Kaganovich, and T. J. Sommerer, Phys. Plasmas, 24, 093511 (2017).

    Article  ADS  Google Scholar 

  12. P. Hartmann, H. Matsuo, Y. Ohtsuka, et al., Jpn. J. Appl. Phys., 42, Part 1, No. 6А, 3633–3640 (2003).

  13. P. A. Bokhan, and Dm. E. Zakrevsky, Tech. Phys., 52, Iss. 1, 104–112 (2007).

    Article  Google Scholar 

  14. H. C. Hayden and N. G. Utterback, Phys. Rev., 135, A1575–1579 (1964).

    Article  ADS  Google Scholar 

  15. A. V. Phelps, Phys. Rev., 117, No. 3, 619–632 (1960).

    Article  ADS  Google Scholar 

  16. A. V. Karelin and A. R. Sorokin, Plasma Physics Reports, 31, 519–523 (2005).

    Article  ADS  Google Scholar 

  17. F. L. Jones, C. G. Morgan, and D. K. Davies, Proc. Phys. Soc., 85, 351–354 (1965).

    Article  ADS  Google Scholar 

  18. P. A. Bokhan and Dm. E. Zakrevsky, Phys. Rev. E, 88, No. 1, 013105 (2013).

    Article  ADS  Google Scholar 

  19. P. A. Bokhan, P. P. Gugin, and Dm. E. Zakrevsky, ZTF Pis'ma,, 44, Iss. 23, 96–103 (2018).

    Google Scholar 

  20. B. M. Jelenković and A. V. Phelps, Phys. Rev. E., 71, No. 1, 016410 (2005).

    Article  ADS  Google Scholar 

  21. D. Marić, M. Savić, J. Sivoš, et al., Eur. Phys. J. D., 68, No. 6, 155 (2014).

    Article  ADS  Google Scholar 

  22. A. N. Tkachev and S. I. Yakovlenko, ZTF Pis’ma, 44, Iss. 16, 54–62 (2003).

    Google Scholar 

  23. N. G. Utterback and G. H. Miller, Rev. Sci. Inst., 32, 1101–1106 (1961).

    Article  ADS  Google Scholar 

  24. P. A. Bokhan, P. P. Gugin, Dm. E. Zakrevsky, et al., Plasma Physics Reports, 45, No. 10 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Bokhan.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 26–29, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokhan, P.A., Gugin, P.P., Zakrevsky, D.E. et al. Mechanism of High-Efficiency Electron Beam Generation in a High-Voltage Discharge in Helium and Its Mixtures with Oxygen and Nitrogen. Russ Phys J 62, 1989–1992 (2020). https://doi.org/10.1007/s11182-020-01933-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01933-8

Keywords

Navigation