Skip to main content
Log in

Magnetocrystalline Anisotropy and Spinorientation Phase Transitions of Co2z Hexaferrite Doped With Ti4+ and Zn2+ Ions

  • PHYSICS OF MAGNETIC PHENOMENA
  • Published:
Russian Physics Journal Aims and scope

The paper presents the methodology for calculation of ferromagnetic resonance spectra of polycrystalline and powder hexaferrites with easy magnetization plane. Magnitudes of magnetocrystalline anisotropy fields and magnetomechanical ratios of the hexaferrites of Ba3Co1.5+хTiхFe24.5–2хO41 (0.0 ≤ х ≤ 1.0) and Ba3Co2.5–хZnxTi0.5Fe23O41 (0.0 ≤ х ≤ 1.2) (0.0 ≤ х ≤ 1.2) systems were determined from an experimental study of the parameters of ferromagnetic resonance at room temperature. The study of temperature dependences of initial magnetic permeability was used to determine the temperatures of spin-orientation phase transitions of these materials. It was shown that substitution of Co2+Ti4+ complex for Fe3+ ions leads to the widening of the temperature region of existence for the magnetic ordering of the easy magnetization plane type with high magnetic permeability in the microwave frequency region. Substitution of Zn2+ ions for some of the Co2+ ions increases the saturation magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Pullar, Prog. Mat. Sci., 57, Issue 7, 1191–1334 (2012).

  2. J. Smit and H. P. J. Wijn, Ferrites, Philips Technical Library, Eindhoven (1959).

    Google Scholar 

  3. A. A. Oshlakov, V. A. Zhuravlev, Russ. Phys. J., 43, No. 9, 804–807 (2000).

    Article  Google Scholar 

  4. V. A. Zhuravlev, E. P. Naiden, A. A. Oshlakov, Russ. Phys. J., 44, No. 8, 806–808 (2001).

    Article  Google Scholar 

  5. R. Grossinger, JMMM, 28, 137142 (1982).

    Article  ADS  Google Scholar 

  6. G. Asti and S. Rinaldi, J. Appl. Phys., 45, 36013610 (1974).

    Google Scholar 

  7. R. Grossinger, J. Alloys and Compounds, 369, 59 (2004).

    Article  Google Scholar 

  8. V. A. Zhuravlev, V. I. Itin, R. V. Minin, et al., J. All. Comp., 771, 686698 (2019).

    Article  Google Scholar 

  9. V. A. Zhuravlev and E. P. Naiden, Phys. Solid State, 51, Iss. 2, 327–333 (2009). 1936

  10. E. Schlömann, J. Phys. Chem. Solids, 6, 257–266 (1958).

    Article  ADS  Google Scholar 

  11. E. Schlömann, J. Phys. Radium, 20, 327 (1959).

    Article  Google Scholar 

  12. E. Schlömann and R. V. Jones, J. Appl. Phys., 30, 177 (1959).

    Article  ADS  Google Scholar 

  13. V. A. Zhuravlev, J. Phys. of the Solid State, 41, Issue 6, 956–959 (1999).

  14. V. A. Zhuravlev and V. A. Meshcheryakov, Russ. Phys. J., 56, No. 12, 1387–1397 (2014).

    Article  Google Scholar 

  15. A. G. Gurevich, G. A. Melkov, Magnetization Oscillations and Waves, CRC Press (1996).

  16. A. V. Zhuravlev, V. A. Zhuravlev, Software for Calculation of Magnetomechanical Ratios and Magnetic Anisotropy Fields of Polycrystalline and Powder Ferrimagnetics with Cubic, Hexagonal, Tetragonal and Trigonal Crystalline Structures from Experiments on Ferromagnetic Resonance, Right holder: National Research Tomsk State University, Registration number 2016660395, date of registration in the Computer Software Register: September 15, 2016.

  17. V. A. Zhuravlev, V. A. Meshcheryakov, A. S. Shestakov, Izv. Vyssh. Uchebn. Zaved. Fiz., 55, No. 8/2, 177–178 (2012).

    Google Scholar 

  18. V. Yu. Kreslin, E. P. Naiden, Instruments and Experimental Techniques, 45, 55-60 (2002)

    Article  Google Scholar 

  19. L. T. Bugaenko, S. M. Ryabykh, A. L. Bugaenko, Moscow University Chemistry Bulletin, 63, Issue 6, 303–317 (2008).

    Google Scholar 

  20. D. Bonnenberg and H. P. J. Wijn, Landolt-Bornstein Numerical and Functional Relationships in Science and Technology, in: New series, Group III: Crystal and Solid State Physics, V. 4, K.-H. Hellwege and A. M. Hellwege, ed., Springer Verlag, Berlin, 593–603, Pt. B (1970).

  21. X. Wang, L. Li, Z. Yue, et al., JMMM, 246, 434–439 (2002).

    Article  ADS  Google Scholar 

  22. V. A. Zhuravlev and V. I. Suslyaev, Russ. Phys. J., 49, No. 8, 840–846 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Zhuravlev, A. V. Zhuravlev, V. V. Atamasov or G. I. Malenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 162–169, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, V.A., Zhuravlev, A.V., Atamasov, V.V. et al. Magnetocrystalline Anisotropy and Spinorientation Phase Transitions of Co2z Hexaferrite Doped With Ti4+ and Zn2+ Ions. Russ Phys J 62, 1926–1936 (2020). https://doi.org/10.1007/s11182-020-01924-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01924-9

Keywords

Navigation