Skip to main content
Log in

Periodic Orbits and Bifurcations of the Vibrational Modes of the Ozone Molecule at High Energies

  • Published:
Russian Physics Journal Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

The study of quantum states near the dissociation threshold is necessary both to understand the formation of molecules and to explore accurately chemical reactions. Quantum calculations of highly excited states can be complemented by methods of nonlinear classical mechanics that help revealing the stable modes of molecular vibrations and their transformations (bifurcations) during excitation of a molecule. The classical approach is particularly efficient at high energies where due to their high density, strong state mixing could occur, and simple assignment in terms of the standard normal modes becomes impossible. In this work we present first results for periodic orbits of the main isotopologue of the ozone molecule (16O3) using recent accurate ab initio potential energy surface. Along with the principle families of the periodic orbits corresponding to the symmetric, antisymmetric, and bending types of molecular vibrations, we have located bifurcations corresponding to the transition to local modes as well as resonance orbits that are responsible for new types of vibrational motions in the high energy range. The classical trajectories of nuclei and their correspondence to the wave functions of the quantum states are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barbe, S. Mikhailenko, E. Starikova, et al., J. Quant. Spectr. Radiat. Transfer, 130, 172–190 (2013).

    Article  ADS  Google Scholar 

  2. V. B. Pavlov-Verevkin, Russ. Chem. Rev., 61, No. 1, 1–14 (1992).

    Article  ADS  Google Scholar 

  3. V. I. Arnold, Catastrophe Theory, Springer, Berlin (1984).

    Book  Google Scholar 

  4. L. Xiao and M. E. Kellman, J. Chem. Phys., 90, No. 11, 6086–6098 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Tyng and M. E. Kellman, J. Chem. Phys., 130, 144311 (2009).

    Article  ADS  Google Scholar 

  6. B. Zhilinskii, Encyclopedia of Complexity and Systems Science, R. Meyers, ed., Springer, New York (2009).

  7. H. Ishikawa, R. W. Field, S. C. Farantos, et al., Annu. Rev. Phys. Chem., 50, 443–484 (1999).

    Article  ADS  Google Scholar 

  8. M. Joyeux, S. Y. Grebenshchikov, J. Bredenbeck, et al., Adv. Chem. Phys., 130, 267–303 (2005).

    Google Scholar 

  9. A. Weinstein, Inv. Math., 20, 47–57 (1973).

    Article  ADS  Google Scholar 

  10. J. Moser, Commun. Pure Appl. Math., 29, 727–747 (1976).

    Article  ADS  Google Scholar 

  11. G. S. Ezra, Advance in Classical Trajectory Methods, JAI Press, Greenwich (1998).

    Google Scholar 

  12. S. C. Farantos, Computer Phys. Commun., 108, 240–258 (1998).

    Article  ADS  Google Scholar 

  13. M. Joyeux, S. C. Farantos, and R. Schinke, J. Phys. Chem., 106, 5407–5421 (2002).

    Google Scholar 

  14. S. C. Farantos, R. Schinke, H. Guo, et al., Chem. Rev., 109, 4248–4271 (2009).

    Article  Google Scholar 

  15. F. Mauguiere, Vl. Tyuterev, and S. C. Farantos, Chem. Phys. Let., 494, 163–169 (2010).

  16. F. Mauguiere, M. Rey, Vl. Tyuterev, et al., J. Chem. Phys. A., 114, 9836–9847 (2010).

    Google Scholar 

  17. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, New York (1990).

    Book  Google Scholar 

  18. M. S. Child and R. T. Lawton, Faraday Discussions of the Chemical Society, 71, 273–285 (1981).

    Article  Google Scholar 

  19. M. E. Kellman, J. Chem. Phys., 83, No. 8, 3843–3858 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  20. P. Fabian and M. Dameris, Ozone in the Atmosphere: Basic Principles, Natural and Human Impacts, Springer, Heidelberg, New York, Dordrecht, London (2014).

    Book  Google Scholar 

  21. Y. Q. Gao and R. Marcus, Science, 293, 259–263 (2001). 1925

    Google Scholar 

  22. A. Campargue, S. Kassi, D. Romanini, et al., J. Mol. Spectrosc., 240, 1–13 (2006).

    Article  ADS  Google Scholar 

  23. A. Campargue, A. Barbe, M.-R. De Backer-Barilly, et al., Phys. Chem. Chem. Phys., 10, 2925–2946 (2008).

    Article  Google Scholar 

  24. Y. L. Babikov, S. N. Mikhailenko, A. Barbe, and V. G. Tyuterev, J. Quant. Spectrosc. Radiat. Transfer, 145, 169–196 (2014).

    Article  ADS  Google Scholar 

  25. A. Alijah, D. Lapierre, and V. Tyuterev, Mol. Phys., 116, 2660–2670 (2018).

    Article  ADS  Google Scholar 

  26. V. G. Tyuterev, R. Kochanov, A. Campargue, et al., Phys. Rev. Lett., 113, 143002 (2014).

    Article  ADS  Google Scholar 

  27. D. Lapierre, A. Alijah, R. Kochanov, et al., Phys. Rev. A, 94, 042514 (2016).

    Article  ADS  Google Scholar 

  28. V. G. Tyuterev, R. V. Kochanov, and S. A. Tashkun, J. Chem. Phys., 146, 064304 (2017).

    Article  ADS  Google Scholar 

  29. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, et al., J. Chem. Phys., 139, 134307 (2013).

    Article  ADS  Google Scholar 

  30. G. Guillon, P. Honvault, R. Kochanov, and V. Tyuterev, J. Phys. Chem. Lett., 9, 1931–1936 (2018).

    Google Scholar 

  31. P. Honvault, G. Guillon, R. Kochanov, and V. Tyuterev, J. Chem. Phys., 149, 214304 (2018).

    Article  Google Scholar 

  32. C. H. Yuen, D. Lapierre, F. Gatti, et al., J. Phys. Chem. A., 123, 7733–7743 (2019).

    Article  Google Scholar 

  33. R. T. Lawton and M. S. Child, Mol. Phys., 44, 709–723 (1981).

    Article  ADS  Google Scholar 

  34. I. N. Kozin, D. A. Sadovskii, and B. I. Zhilinskii, Spectrochimica Acta A, 61, 2867–2885 (2004).

    Article  ADS  Google Scholar 

  35. Vl. G. Tyuterev, S. A. Tashkun, D. W. Schwenke, et al., Chem. Phys. Lett., 316, No. 3/4, 271–279 (2000).

  36. F. Holka, P. G. Szalay, T. Müller, and V. G. Tyuterev, J. Phys. Chem. A, 114, 9927–9935 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Egorov, F. Mauguiere or VI. G. Tyuterev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 154–161, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, O.V., Mauguiere, F. & Tyuterev, V.G. Periodic Orbits and Bifurcations of the Vibrational Modes of the Ozone Molecule at High Energies. Russ Phys J 62, 1917–1925 (2020). https://doi.org/10.1007/s11182-020-01923-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01923-w

Keywords

Navigation