Skip to main content
Log in

Influence of Carbon and Oxygen Impurities on Migration Velocity of Grain-boundary Triple Junctions in FCC Metals

  • Published:
Russian Physics Journal Aims and scope

Using molecular dynamics simulation, this paper studies the influence of impurity atoms of carbon and oxygen on the migration velocity of triple junctions of grain boundaries created by misorientations about <111> axis in Ni, Ag, Al metals with the face-centered cubic crystal system. It is shown that the addition of impurity atoms of light elements substantially constrains the triple junctions from migration. Carbon atoms tend to create clusters which become effective locks when fixed at the grain boundaries, thereby preventing their migration. Oxygen atoms do not form aggregates, but due to high values of the binding energy between atoms and grain boundaries, they effectively inhibit their migration. Binding energies between carbon and oxygen atoms and grain boundary dislocations are calculated in metals at issue. The obtained results correlate with the dependencies between the migration velocity of the triple junctions and the impurity concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Ovid'ko, N.V. Skiba, and A.G. Sheinerman, Mater. Phys. Mech., 8, No. 2, 149–154 (2009).

    Google Scholar 

  2. G. Gottstein, V. Sursaeva, and L. Shvindlerman, INTS, 7, 273–283 (1999).

    Google Scholar 

  3. S. G. Protasova, V. G. Sursaeva, and L. S. Shvindlerman, Phys. Solid State, 45, No. 8, 1471–1474 (2003).

    Article  ADS  Google Scholar 

  4. M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, and G. Gottstein, INTS, 7, 307–319 (1999).

    Google Scholar 

  5. M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, and G. Gottstein, Acta Mater., 50, 1405–1420 (2002).

    Article  Google Scholar 

  6. G. Poletaev, I. Zorya, and R. Rakitin, Comput. Mater. Sci., 148, 184–189 (2018).

    Article  Google Scholar 

  7. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, et al., J. Exp. Theor. Phys., 128, No. 1, 88–93 (2019).

    Article  ADS  Google Scholar 

  8. G. M. Poletaev, M. D. Starostenkov, I. V. Zorya, et al., Russ. Phys. J., 61, No. 7, 1236–1240 (2018).

    Article  Google Scholar 

  9. H. J. Goldschmidt, Interstitial Alloys, Butterworths, London (1967), 640 p.

    Book  Google Scholar 

  10. L. Pauling, The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca (1960), 664 p.

    MATH  Google Scholar 

  11. F. Cleri and V. Rosato, Phys. Rev. B, 48, No. 1, 22–33 (1993).

    Article  ADS  Google Scholar 

  12. I. V. Zorya, G. M. Poletaev, and M. D. Starostenkov, Fundamental’nye problemy sovremennogo materialovedeniya, 15, No. 4, 526–532 (2018).

    Google Scholar 

  13. N.A. Kulabukhova, G.M. Poletaev, M.D. Starostenkov, et al., Russ. Phys. J., 54, No. 12, 1394–1400 (2011).

    Article  Google Scholar 

  14. G. M. Poletaev, I. V. Zorya, D. V. Novoselova, and M. D. Starostenkov, Int. J. Mater. Res., 108, No. 10, 785– 790 (2017).

    Article  Google Scholar 

  15. G. M. Poletaev and M. D. Starostenkov, Tech. Phys. Lett., 35, No. 1, 1–4 (2009).

    Article  ADS  Google Scholar 

  16. M. Ruda, D. Farkas, and G. Garcia, Comput. Mater. Sci., 45, 550–560 (2009).

    Article  Google Scholar 

  17. P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, J. Appl. Phys., 103, 083504 (2008).

    Article  ADS  Google Scholar 

  18. R. G. A. Veiga, H. Goldenstein, M. Perez, and C. S. Becquart, Scripta Mater., 108, 19–22 (2015).

    Article  Google Scholar 

  19. L. E. Kar’kina, I. N. Kar’kin, I. L. Yakovleva, and T. A. Zubkova, Phys. Met. Metallogr., 114, No. 2, 155–161 (2013).

    Article  ADS  Google Scholar 

  20. A. Atrens, Scripta Metall., 8, 401–412 (1974).

    Article  Google Scholar 

  21. V. Sursaeva and P. Zieba, Defect Diffus. Forum, 237–240, 578–583 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Poletaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 83–87, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Zorya, I.V., Rakitin, R.Y. et al. Influence of Carbon and Oxygen Impurities on Migration Velocity of Grain-boundary Triple Junctions in FCC Metals. Russ Phys J 62, 1840–1845 (2020). https://doi.org/10.1007/s11182-020-01914-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01914-x

Keywords

Navigation