Skip to main content
Log in

Thermal Stability of Structure and Properties of Gradient and Gradient-Layered Coatings of the Ti–Al–Si–Cu–N System

  • Published:
Russian Physics Journal Aims and scope

Using the methods of dark-field electron microscopy analysis, energy-dispersive X-ray microanalysis, hardness measurements and scratch testing, the variations of elemental composition, structure and mechanical properties of gradient and gradient-layered coatings of the Ti–Al–Si–Cu–N system are investigated during annealing in vacuum at the temperatures within the range 973–1373 K. It is found out that at the annealing temperatures up to 1173 K such structural changes as equalization of the nitride-phase lattice parameter throughout the coating thickness and decreased lattice bending are due to the diffusion-induced redistribution followed by a drop in the concentration of the nitride-doping elements and precipitation of the nanosized copper crystals. For the annealing temperature 1373 K, a several-fold (compared to the state after deposition) decrease in the nitride-phase crystal lattice bending and a change in the concentration of the elements of a few tens of percent are revealed, as well as the formation of heterophase nanocrystalline structure during their localization at the interfaces. A similarity of the defect microstructure in the crystals of both coatings after annealing at 1373 K is determined. The influence of the structural-phase transformations on the variations in the hardness and adhesion strength values of the coatings is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yi Xi Wang and Sam Zhang, Surf. Coat. Technol., 258, 1–16 (2014).

  2. A. R. Shugurov and A. V. Panin, Phys. Mesomech., 20, No. 4, 472–479 (2017).

    Article  Google Scholar 

  3. S. V. Ovchinnikov and Yu. P. Pinzhin, Russ. Phys. J., 59, No. 6, 799–808 (2016).

    Article  Google Scholar 

  4. S. Veprek, M. G.J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films, 476, 1–29 (2005).

    Article  ADS  Google Scholar 

  5. K. P. Andreasen, T. Jensen, J. H. Petersen, et al., Surf. Coat. Technol., 182, 268–275 (2004).

    Article  Google Scholar 

  6. M. Parlinska-Wojtan, A. Karimi, O. Coddet, et al., Surf. Coat. Technol., 188–189, 344–350 (2004).

  7. A. Flink, J. M. Andersson, B. Alling, et al., Thin Solid Films, 517, 714–721 (2008).

    Article  ADS  Google Scholar 

  8. L. Hultman, Vacuum, 57, 1–30 (2000).

    Article  ADS  Google Scholar 

  9. R. Daniel, J. Musil, P. Zeman, and C. T. Mitterer, Surf. Coat. Technol., 201, 3368–3376 (2006).

    Article  Google Scholar 

  10. P. H. Mayrhofer and C. Mitterer, Surf. Coat. Technol., 133–134, 131–137 (2000).

  11. P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, Thin Solid Films, 415, 151–159 (2002).

    Article  ADS  Google Scholar 

  12. I. Zukerman, A. Raveh, Y. Shneor, et al., Surf. Coat. Technol., 201, 6161–6166 (2007).

    Article  Google Scholar 

  13. Ph. V. Kiryukhantsev-Korneev, D. V. Shtansky, M. I. Petrzhil, et al., Surf. Coat. Technol., 201, 6143–6147 (2007).

  14. P. H. Mayrhofer, H. Willmann, and A. E. Reiter, Surf. Coat. Technol., 202, 4935– 4938 (2008).

    Article  Google Scholar 

  15. S. V. Ovchinnikov, A. D. Korotaev, and Yu. P. Pinzhin, AIP Conf. Proc., 1623, 466–469 (2014).

    Google Scholar 

  16. W. C. Oliver and G. M. Pharr, J. Mater. Res., 7, No. 6, 1564–1583 (1992).

    Article  ADS  Google Scholar 

  17. F. Pinakidou, E. C. Paloura, G. M. Matenoglou, and P. Patsalas, Surf. Coat. Technol., 204, 1933–1936 (2010).

    Article  Google Scholar 

  18. A. N. Tyumentsev, A. D. Korotaev, and Yu. P. Pinzhiun, Zh. Fizich. Mezomekh., 7, No. 4, 35–53 (2004).

    Google Scholar 

  19. Yu. A. Nechaev and M. Kamyshov, Izvestiya Akad. Nauk. Metally, No. 6, 50–53 (1969).

  20. P. B. Hirsh, A. Howie, R. B. Nicholson, et al., Electron Microscopy of Thin Crystals, Butterworths, London (1965).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ovchinnikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 63–72, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, S.V., Pinzhin, Y.P. Thermal Stability of Structure and Properties of Gradient and Gradient-Layered Coatings of the Ti–Al–Si–Cu–N System. Russ Phys J 62, 1602–1612 (2020). https://doi.org/10.1007/s11182-020-01882-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01882-2

Keywords

Navigation