Skip to main content
Log in

Structure and Phase Composition of Heat-Affected Zone of Austenite Steel After Deformation

  • Published:
Russian Physics Journal Aims and scope

The paper presents the transmission electron microscopy (TEM) investigations of the thin film structure and phase composition of the heat-affected zone (HAZ) of a weld joint produced by manual metal arc welding (MMAW) of 0.12C–18Cr–10Ni–1Ti–Fe austenite steel exposed then to plastic deformation. The test machine INSTRON-1185 is used to perform quasi-static tensile tests at room temperature and a 1.7∙10–4 s–1 strain rate up to 5 and 37% deformations. TEM investigations are carried out within the HAZ, at a 1 mm distance to the weld line, in the direction of the parent metal and at 0.5 mm distance to the weld deposit. It is shown that MMAW results in the formation of ε-martensite both in the parent metal and weld deposit regions. In the latter, γ → ε phase transformation occurs faster. Plastic strain ranging between 0–5% throughout the HAZ leads to further γ → ε phase transformation. In the weld deposit of the HAZ region, this phase transformation is also more intensive. Further increase in the degree of plastic strain from 5 to 37% results in γ → ε → α phase transformation and an elastoplastic lattice distortion of the α-phase. The plastic flexure remains in the crystal lattice of the γ-phase. The bulk material in the HAZ region satisfies the following conditions: scalar dislocation density is higher than the excess, and internal shear stresses are higher than long-ranging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Ababkov, N. I. Kashubskii, V. L. Knyaz'kov, et al., Diagnostics, Damage and Repair of High Pressure Boiler Drums [in Russian], Mashinostroenie, Moscow (2011), 256 p.

    Google Scholar 

  2. E. A. Ozhiganov, N. A. Popova, A. N. Smirnov, et al., Fundamental'nye problemy sovremennogo materialovedeniya, 13, No. 2, 191–197 (2016).

  3. T. F. Volynova, High Manganese Steels and Alloys [in Russian], Metallurgiya, Мoscow (1988), 343 p.

    Google Scholar 

  4. E. V. Mel'nikov, E. G. Astafurova, G. G. Maier, and V. A. Moskvina, Izv. Vyssh. Uchebn. Zaved., Fiz., 59, No. 7/2, 164–1682016.

  5. M. Okayasu and S. Tomida, Mat. Sci. Eng. A, 684, 712–725 (2017).

    Article  Google Scholar 

  6. I. A. Kurzina, A. I. Potekaev, N. A. Popova, et al., Russ, Phys. J., 61, No. 4, 715-721 (2018).

    Article  Google Scholar 

  7. M. S. Tukeeva, E. V. Mel'nikov, and E. G. Astafurova, Izv. Vyssh. Uchebn. Zaved., Fiz., 53, No. 11/3, 10–13 (2010).

    Google Scholar 

  8. I. Yu. Litovchenko, Polekhina N.A., Tyumentsev A.N., et al., Russ, Phys. J., 59, No. 6, 782-787 (2016).

    Article  Google Scholar 

  9. C. Ullrich R. Eckner, L. Krüger, et al., Mat. Sci. Eng. A, 649, 390–399 (2016).

    Article  Google Scholar 

  10. М. Eskandari, A. Zarei-Hanzaki, M. A. Mohtadi-Bonab, et al., Mat. Sci. Eng. A, 674, 514–528 (2016).

    Article  Google Scholar 

  11. Z. H. Cai, H. Ding, Z. Y. Tang, and R. D.K. Misra, Mat. Sci. Eng. A, 676, 289–293 (2016).

    Article  Google Scholar 

  12. D. Rafaja, C. Krbetschek, C. Ullrich, and S. Martin, J. Appl. Cryst., 47, 936–947 (2014).

    Article  Google Scholar 

  13. S. A. Akkuzin, I. Yu. Litovchenko, A. N. Tyumentsev, and V. M. Chernov, Russ, Phys. J., 62, No. 4, 698–704 (2019).

    Article  Google Scholar 

  14. I. S. Konovalenko, A. Yu. Nikonov, I. S. Konovalenko, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 58, No. 6/2, 137–141 (2015).

    Google Scholar 

  15. Potekaev A.I., Klopotov A.A., Grinkevich L.S., Klimenov V.A., et al., Russ, Phys. J., 59, No. 7, 971-977 (2016).

  16. L. M. Utevskii, Diffraction Electron Microscopy in Metallurgy [in Russian], Metallurgiya, Мoscow (1973), 584 p.

    Google Scholar 

  17. P. B. Hirsch, A. Howie, R. B. Nicholson, et al., Electron Microscopy of Thin Crystals [Russian translation], Mir, Moscow (1968), 574 p.

    Google Scholar 

  18. N. A. Koneva and E. V. Kozlov, Russ, Phys. J., 34, No. 3, 224–236 (1991).

    Google Scholar 

  19. A. N. Smirnov, N. A. Popova, N. V. Ababkov, et al., Fundamental'nye problemy sovremennogo materialovedeniya, 15, No. 3, 434–4412018.

  20. N. Koneva, S. Kiseleva, and N. Popova, Structural Evolution and Internal Stress Fields [in Russian], Saarbrucken: Lambert, Academic Publishing, (2017), 148 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Popova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No, 9, pp, 48–56, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, N.A., Smirnov, A.N., Nikonenko, E.L. et al. Structure and Phase Composition of Heat-Affected Zone of Austenite Steel After Deformation. Russ Phys J 62, 1587–1594 (2020). https://doi.org/10.1007/s11182-020-01880-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01880-4

Keywords

Navigation