Skip to main content
Log in

Thermodiffusive Mechanism of Mechanical Stress Development Near the Boundary Between Materials with Differing Rheological Properties

  • Published:
Russian Physics Journal Aims and scope

Principles of formation of thermodiffusive stresses in a viscoeleastic bilayer material under the temperature influence are investigated. It is shown that it is possible to use an analytical solution of the problem of mechanical equilibrium of a bilayer viscoelstic plate for an estimation of stresses and strains due to heating and diffusion taking into account the Soret effect. It is demonstrated that the viscoeleastic effect is critical in the cases where the transport processes occur within the times on the order of 0.01 s and shorter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Panata, S. Zhanga, and K. J. Hsiaa, Acta Mater., 51, Iss. 1, 239–249 (2003).

    Article  Google Scholar 

  2. J. O. Carneiro, V. Teixeira, A. Portinha, et al., Rev. Adv. Mater. Sci., 7, 32–40 (2004).

    Google Scholar 

  3. A. D. Korotaev, I. Yu. Litovchenko, and S. V. Ovchinnikov, Zh. Fizich. Mezomekh., 21, No. 5, 82–89 (2018).

    Google Scholar 

  4. A. I. Kalinichenko, S. S. Perepelkin, and V. E. Strel'nitskij, Probl. Atom. Sci. Tech., No. 1. Series: Plasma Physics (23), 203–206 (2017).

  5. M. Kianicova, K. Slamecka, and J. Pokluda, in: Proc. Conf. METAL 2011, 840–846, Tanger sro, Ostrava (2011).

  6. A. R. Gachkevich, A. B. Zemskov, and D. V. Tarlakovskii, Izvest. Sarat. Uni. Ser.: Mat. Mekh. Inform., 13,Iss. 4, Part 1, 52–59 (2013).

  7. Yu. F. Ivanov, A. I. Potekaev, A. A. Klopotov, et al., Russ. Phys. J., 62, No. 6, 940–947 (2019).

    Article  Google Scholar 

  8. W. G. Mao, Y. C. Zhou, L. Yang, and X. H. Yu, Mech. Mater., 38, Iss. 12, 1118– 1127 (2006).

    Article  Google Scholar 

  9. A. Kagawa, Ya. Ohta, K. Nakayama, and T. Chifu, Mater. Trans., 44, No. 8, 1593–1598 (2003).

    Article  Google Scholar 

  10. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, John Wiley, New York (1960).

    MATH  Google Scholar 

  11. Коваленко A. D. Kovalenko, Thermal Elasticity [in Russian], Vyssha Shkola, Kiev (1975).

    Google Scholar 

  12. V. S. Eremeev, Diffusion and Stresses [in Russian], Enegoatomizdat, Moscow (1984).

    Google Scholar 

  13. A. G. Knyazeva, I. L. Pobol’, and I. G. Oleshuk, Izvestiya VUZov. Fiz., 56, No. 7/2, 14 – 24 (2013).

    Google Scholar 

  14. B. S. Bokstein, S. Z. Bokstein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  15. M. V. Chepak-Gizbrekht and A. G. Knyazeva, J. Eng. Phys. Thermophys., 91, No. 2, 265–277 (2018).

    Article  Google Scholar 

  16. G. Bateman, Tables of Integral Transforms. Part I, Fourier, Laplace and Mellin Transforms, New York-Toronto-London, Mc Graw-Hill Book Company, Inc. (1954).

    Google Scholar 

  17. N. A. Babychev, N. А. Babushkina, A. M. Bratkovskii, et al., Physical Quantities. Reference Book [in

  18. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology – New Series. Diffusion in Solid Metals and Alloys [Electronic resource] (Ed. H. Mehrer), Springer, Berlin (1990). URL: http://onlinelibrary.wiley.com/doi/10.1002/crat.2170231029/abstract. (access date: 3.07.2019). – DOI: https://doi.org/10.1002/crat.2170231029.

    Article  Google Scholar 

  19. A. G. Shashkov, A. F. Zolotukhina, and V. B. Vasilenko, Factor of Thermodiffusion of Gas Mixtures. Determination Methods (Ed. S. A. Zhdanka) [in Russian], Belorusskaya Nauka, Minsk (2007).

  20. Modification and Alloying of the Surface with Laser, Ion, and Electron Beams: industrial press (Ed. J. M. Pout) [in Russian], Mashinostroyeniye, Moscow (1987).

  21. M. Korolczuk-Hejnak and P. Migas, Arch. Metall. Mater., 57, Iss. 2, 583–591 (2012).

    Article  Google Scholar 

  22. G. Kaptay, Z. Metallkd., 96, Iss. 1, 24–31 (2005).

  23. A. V. Asanov, I. V. Antoshkin, N. V. Malkov, et al., Vestnik YuUrGU, Ser. Metallurg., No. 9(109), 7–9 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Chepak-Gizbrekht.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 20–25, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chepak-Gizbrekht, M.V. Thermodiffusive Mechanism of Mechanical Stress Development Near the Boundary Between Materials with Differing Rheological Properties. Russ Phys J 62, 1558–1564 (2020). https://doi.org/10.1007/s11182-020-01876-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01876-0

Keywords

Navigation