Skip to main content
Log in

Ti-Ni Powder Structure after Mechanical Activation and Interaction with Hydrogen

  • Published:
Russian Physics Journal Aims and scope

The paper studies the interaction between hydrogen and the multiphase Ti–Ni alloy of near-equiatomic composition after its high-energy mechanical activation in a planetary ball mill generating a centrifugal acceleration of 60 g. It is described that mechanical activation results in a non-monotonous change in the average size of particles due to their destruction followed by agglomeration. After mechanical activation for 10 seconds, the width of X-ray lines changes in all phases. It is found that during the hydrogenation process, the crystal lattice parameters of the TiNi (austenite) and TiNi3 phases do not change, in contrast to the Ti2Ni phase, whose lattice parameter increases by 2.5%. This fact suggests that the main hydrogen interaction in multiphase Ti–Ni alloys of near-equiatomic composition occurs with the Ti2Ni phase. Hydrogenation of the multiphase Ti–Ni alloy powder changes the lattice parameter of the Ti2Ni phase, such that it matches the lattice parameter of the Ti2NiH0.5 and Ti2NiH0.8 hydride phases after mechanical activation for 30 and 300 seconds, respectively. The paper identifies the critical time of the defect accumulation during high-energy mechanical activation. With increasing time of hydrogenation, oxide layers destroy, thereby facilitating the hydrogen penetration into powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. T. Takeshita, H. Tanaka, N. Kuriyama, et al., J. Alloy. Compd., 311, 188–193 (2000).

    Article  Google Scholar 

  2. M. Tomita, K. Yokoyama, and J. Sakai, Corros. Sci., 50, 2061–2069 (2008).

    Article  Google Scholar 

  3. D. R. Arantes, X. Y. Huang, C. Marte, et al., Acta Metall. Mater., 41, 3215–3222 (1993).

    Article  Google Scholar 

  4. K. P. Zol'nikov, A. V. Korchuganov, D. S. Kryzhevich, et al., Phys. Mesomech., 22, No. 3, 492–497 (2019).

    Google Scholar 

  5. D. M. Gattia, G. Gizer, and A. Montone, Int. J. Hydrogen Energ., 39, 9924–9930 (2014).

    Article  Google Scholar 

  6. A. Stepanov, E. Ivanov, and I. Konstanchuk, J. Less Common Met., 131, 89–97 (1987).

    Article  Google Scholar 

  7. T. Nobuki, J-C. Crivello, and F. Cuevas, Int. J. Hydrogen Energ., 44, 10770–10776 (2019).

  8. P. S. Gilman and J. S. Benjamin, Annu. Rev. Mаter. Sci., 13, 279 (1983).

    Article  ADS  Google Scholar 

  9. A. I. Lotkov and V. N. Grishkov, Russ. Phys. J., 28, No. 5, 390-403 (1985).

    Google Scholar 

  10. E. Abdulmenova, O. Vaulina, and S. Kulkov, IOP Conf.: MSE, 511, 012009 (2019).

  11. Yu. V. Baimakov and A. I. Zhurin, Electrolysis in Hydrometallurgy. Metallurgizdat [in Russian], Moscow (1962), 617 p.

  12. I. N. Burnyshev and D. G. Kalyuzhnyi, Khimicheskaya fizika i mezoskopiya, No. 2, 250–256 (2014).

    Google Scholar 

  13. P. Scherrer, Göttinger Nachrichten Gesellschaft, No. 2, 98–101(1918).

    Google Scholar 

  14. B. Luan, N. Cui, H. Zhao, et al., J. Power Sources, 55, 101–106 (1995).

    Article  ADS  Google Scholar 

  15. V. Yu. Zadorozhnyy, S. N. Klyamkin, S. D. Kaloshkin, et al., Inorg. Mater.: Appl. Res., 1, No. 1, 41–45 (2010).

    Article  Google Scholar 

  16. C. Zhang, Y. Wu, and L. You, J. Alloy. Compd., 781, 613–620 (2019).

    Article  Google Scholar 

  17. K. Edalati, H. Shao, H. Emami, et al., Int. J. Hydrogen Energ., 41, 8917–8924 (2016).

    Article  Google Scholar 

  18. M. A. Gutjahr, H. Buchner, K. D. Beccu, et al., in: Proc. 8th Int. Power Sources Conf., (1972), 79 p.

  19. E. W. Justi, H. H. Ewe, A. W. Kalberlah, et al., Energ. Convers., 10, 183–187 (1970).

    Article  Google Scholar 

  20. H. Buchner, M. A. Gutjahr, K. D. Beccu, et al., Z. Metallkd., 63, 497–500 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Abdul’menova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 137–142, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul’menova, E.V., Kul’kov, S.N. Ti-Ni Powder Structure after Mechanical Activation and Interaction with Hydrogen. Russ Phys J 62, 1455–1460 (2019). https://doi.org/10.1007/s11182-019-01873-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01873-y

Keywords

Navigation