Skip to main content
Log in

Current-Voltage Characteristics of nBn Structures Based on Mercury Cadmium Telluride Epitaxial Films

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

The current – voltage characteristics of nBn structures based on HgCdTe grown by molecular beam epitaxy (MBE) on GaAs substrates in the temperature range 9–300 K were experimentally studied. The choice of technological parameters of nBn structures was determined by the possibilities of creating infrared detectors for the 3–5 μm spectral range (MWIR). Structures with various compositions (from 0.67 to 0.84) and thicknesses (from 120 to 300 nm) of the barrier layers were studied. It was established that the composition in the barrier layer exerts the greatest influence on the type of current–voltage characteristics. For a composition equal to 0.84, the current density at small reverse bias is much lower than that for structures with lower compositions in the barrier. For structures with pronounced temperature dependence of the current density, activation energies were found that ranged from 66 to 123 meV. Studies of nBn structures with various electrode areas have shown that for high current densities, leakage along the lateral walls plays an important role. Possible mechanisms for the formation of current – voltage characteristics in MWIR nBn structures based on MBE HgCdTe are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Сhu and A. Sher, Device Physics of Narrow Gap Semiconductors, Springer, N. Y. (2010).

    Google Scholar 

  2. M. A. Kinch, State-of-the-Art Infrared Detector Technology, SPIE Press, Bellingham, Washington (2014).

    Book  Google Scholar 

  3. A. Rogalski, Infrared Detectors [Russian translation], Nauka, Novosibirsk (2003).

    Google Scholar 

  4. S. Maimon and G. W. Wicks, Appl. Phys. Lett., 89, No. 15, 151109 (2006).

    Article  ADS  Google Scholar 

  5. W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev., 2, No. 4, 041303 (2015).

    Article  ADS  Google Scholar 

  6. I. I. Izhnin, A. V. Voitsekhovsky, A. G. Korotaev, et al., Infrared Phys. Technol., 81, 52–58 (2017).

    Article  ADS  Google Scholar 

  7. A. V. Voitsekhovskii and D. I. Gorn, Prikladn. Fiz., No. 4, 83–86 (2017).

  8. H. S. Kim, O. O. Cellek, Z. Y. Lin, et al., Appl. Phys. Lett., 101, No. 16, 161114 (2012).

    Article  ADS  Google Scholar 

  9. C. J. Hill, A. Soibel, S. A. Keo, et al., Proc. SPIE, 7298, 729804 (2009).

    Article  Google Scholar 

  10. E. Delli, V. Letka, P. D. Hodgson, et al., ACS Photonics, 6, No. 2, 538–544 (2019).

    Article  Google Scholar 

  11. P. Martyniuk, M. Kopytko, and A. Rogalski, Opto-Electron. Rev., 22, No. 2, 127–146 (2014).

    ADS  Google Scholar 

  12. A. M. Itsuno, J. D. Phillips, and S. Velicu, J. Electron. Mater., 40, No. 8, 1624–1629 (2011).

    Article  ADS  Google Scholar 

  13. F. Uzgur and S. Kocaman, Infrared Phys. Technol., 97, 123–128 (2019).

    Article  ADS  Google Scholar 

  14. A. V. Voitsekhovskii, D. I. Gorn, S. A. Dvoretskii, et al., Prikladn. Fiz., No. 5, 50–54 (2018).

  15. Z. H. Ye, Y. Y. Chen, P. Zhang, et al., Proc. SPIE, 9070, 90701L (2014).

    ADS  Google Scholar 

  16. M. Kopytko, J. Wróbel, K. Jóźwikowski, et al., J. Electron. Mater., 44, No. 1, 158–166 (2015).

    Article  ADS  Google Scholar 

  17. M. Kopytko and A. Rogalski, Prog. Quant. Electron., 47, 1–18 (2016).

    Article  ADS  Google Scholar 

  18. N. D. Akhavan, G. Jolley, J. Antoszewski, and L. Faraone, Appl. Phys. Lett., 105, No. 12, 121110 (2014).

    Article  ADS  Google Scholar 

  19. N. D. Akhavan, G. A. Umana-Membreno, R. Gu, et al., IEEE Trans. Electron. Dev., 65, No. 2, 591–598 (2018).

    Article  ADS  Google Scholar 

  20. A. M. Itsuno, J. D. Phillips, and S. Velicu, Appl. Phys. Lett., 100, No. 16, 161102 (2012).

    Article  ADS  Google Scholar 

  21. S. Velicu, J. Zhao, M. Morley, et al., Proc. SPIE, 8268, 826282X (2012).

    Google Scholar 

  22. A. M. Itsuno, J. D. Phillips, and S. Velicu, J. Electron. Mater., 41, No. 10, 2886–2892 (2012).

    Article  ADS  Google Scholar 

  23. O. Gravrand, F. Boulard, A. Ferron, et al., J. Electron. Mater., 44, No. 9, 3069– 3075 (2015).

    Article  ADS  Google Scholar 

  24. M. Kopytko, A. Kębłowski, W. Gawron, et al., Opto-Electron. Rev., 21, No. 4, 402–405 (2013).

    Article  ADS  Google Scholar 

  25. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Prikladn. Fiz., No. 4, 43–48 (2018).

  26. R. Fu and J. Pattison, Opt. Eng., 51, No. 10, 104003 (2012).

    Article  ADS  Google Scholar 

  27. P. Zhang, Z. H. Ye, C. H. Sun, et al., J. Electron. Mater., 45, No. 9 , 4716–4720 (2016).

    Article  ADS  Google Scholar 

  28. A. M. Itsuno, Bandgap-Engineered HgCdTe Infrared Detector Structures for Reduced Cooling Requirements, Ph. D. dissertation, University of Michigan (2012).

  29. A. Rogalski, Rep. Prog. Phys., 68, No. 10, 2267 (2005).

    Article  ADS  Google Scholar 

  30. M. Kopytko, A. Kębłowski, W. Gawron, et al., IEEE Trans. Electron. Dev., 61, No. 11, 3803–3807 (2014).

    Article  ADS  Google Scholar 

  31. Handbook of Infrared Detection Technologies, eds. M. Henini and M. Razeghi, Elsevier Advanced Technology, Oxford (2002).

  32. W. E. Tennant, D. Lee, M. Zandian, et al., J. Electron. Mater., 37, No. 9, 1406–1410 (2008).

    Article  ADS  Google Scholar 

  33. W. E. Tennant, J. Electron. Mater., 9, No. 7, 1030–1035 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 118–124, June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Current-Voltage Characteristics of nBn Structures Based on Mercury Cadmium Telluride Epitaxial Films. Russ Phys J 62, 1054–1061 (2019). https://doi.org/10.1007/s11182-019-01813-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01813-w

Keywords

Navigation