Skip to main content

Advertisement

Log in

Numerical Study of Amplification of Subnanosecond Radiation Pulses in the Gas Amplifier of the THL-100 Laser System

  • Published:
Russian Physics Journal Aims and scope

Methods for increasing the energy characteristics of the THL-100 hybrid laser system are investigated by numerical modeling. The influence of the input laser radiation energy and system of mirrors on the energy and maximal laser radiation intensity in the amplifier is investigated. The systems of amplifier mirrors in which the number of passes of the active medium changed from Nm = 27 to 39 are considered. It is shown that at Nm =27, an increase in the pump energy of the amplifier from 270 to 400 J allows the output radiation energy to be increased by a factor of 2.6 (to 8.34 J) with a maximal radiation intensity in the amplifier no more than 7 GW·cm–2. Pulse compression to an initial duration of 50 fs will allow the average output power of the THL-100 system to be increased up to 160 TW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Strickland and G. Mourou, Opt. Commun., 56, 219–221 (1985).

    Article  ADS  Google Scholar 

  2. T. Ozaki, J. Keiffer, R. Toth, et al., Laser and Part. Beams, 24, 101–106 (2005).

    Article  ADS  Google Scholar 

  3. S. Alekseev, A. Aristov, N. Ivanov, et al., Quantum Electron., 42, 377–379 (2012).

    Article  ADS  Google Scholar 

  4. S. Alekseev, N. Ivanov, M. Ivanov, et al., Quantum Electron., 47, 184–187 (2017).

    Article  ADS  Google Scholar 

  5. A. Yastremskii, N. Ivanov, and V. Losev, Quantum Electron., 48, 206–2011 (2018).

    Article  ADS  Google Scholar 

  6. S. Alekseev, A. Aristov, Ya. Grudtsyn, et al., Quantum Electron., 43, 190–200 (2013).

    Article  ADS  Google Scholar 

  7. S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, et al., Russ. Phys. J., 60, No. 8, 1346–1352 (2017).

    Article  Google Scholar 

  8. A. Yastremskii, N. Ivanov, and V. Losev, Quantum Electron., 46, 982–900 (2016).

    Article  ADS  Google Scholar 

  9. G. Malinovskii, S. Mamaev, L. Mikheev, et al., Quantum Electron., 31, 617–622 (2001).

    Article  ADS  Google Scholar 

  10. S. Alekseev, N. G. Ivanov, V. F. Losev, et al., Opt, Atm. Okeana, 27, 326–331 (2014).

    Google Scholar 

  11. C. Fletcher, Computational Techniques for Fluid Dynamics [Russian translation], Mir, Moscow (1991).

  12. T. Kuznetsova and L. Mikheev, Quantum Electron., 38, 969–975 (2008).

    Article  ADS  Google Scholar 

  13. J. Fleck, Phys. Rev. B, 1, 84–100 (1970).

    Article  ADS  Google Scholar 

  14. S. Alekseev, N. G. Ivanov, V. F. Losev, et al., Opt. Atmos. Okeana, 26, 863–866 (2013).

    Google Scholar 

  15. V. Losev, S. Alekseev, N. Ivanov, et al., Proc. SPIE, 7993, 799317 (2011).

    Article  Google Scholar 

  16. A. G. Yastremskii, M. V. Ivanov, N. G. Ivanov, and V. F. Losev, Opt. Atmos. Okeana, 29, No. 12, 121–127 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Yastremskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 169–174, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yastremskii, A.G., Ivanov, N.G. & Losev, V.F. Numerical Study of Amplification of Subnanosecond Radiation Pulses in the Gas Amplifier of the THL-100 Laser System. Russ Phys J 62, 915–921 (2019). https://doi.org/10.1007/s11182-019-01796-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01796-8

Keywords

Navigation