Skip to main content
Log in

On Pulsed Modes of the Glowing Corona Region

  • PLASMA PHYSICS
  • Published:
Russian Physics Journal Aims and scope

A corona discharge is experimentally studied in atmospheric air on a needle electrode with the curvature radius 40 μm. For both electrode voltage polarities, but different discharge burning modes, repetitive current pulses with the FWHM ~200 ns are registered. It is shown that in a wide range of negative-polarity voltages the area of the glow registered in the vicinity of the needle has a spherical shape, and in the case of a positive polarity of the needle tip, starting from a certain voltage value, cylindrical streamers are formed from the spherical glow area, whose length increases with the voltage. It is found out that the size of the glowing spherical formations near the needle tip, given the same voltage value, is larger in the case of negative polarity than in the positive one. It is validated that the radiation of the second positive system of nitrogen in the UVspectral region dominates in the corona discharge emission spectrum before its transition into a spark discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Uzhov, Cleaning of Industrial Gases with Electrical Filters [in Russian], Khimiya, Moscow (1967).

  2. N. A. Kaptsov, Corona Discharge and its Application in Electrofilters [in Russian], Gostekhizdat, Moscow-Leningrad (1950).

  3. I. K. Reshidov, An experimental investigation of electric fields of electrofilters and their characteristics in the case of a back corona [in Russian], Author’s Abstract of Cand. Eng. Scie. Disser., MEI, Moscow (1971).

  4. R. M. Shaffert, Electrography [in Russian], Mir, Moscow (1968).

  5. G. S. Young and H. G. Greig, RCA Review, 4, No. 15, 469 (1954).

  6. A. V. Kotov and V. L. Turubarov, Nauchn. Tekhn. Vest. Inf. Tekhn. Mekh. Opt., 4, No. 2, 144 (2004).

    Google Scholar 

  7. I. B. Rubashov and N. S. Bortnikov, Electrogasdynamics [in Russian], Atomizdat, Moscow (1971).

  8. A. A. Denisov and V. S. Nagornyi, Electrohydro- and Electrogasdynamic Automation Facilities [in Russian], Mashinostroyenie, Leningrad (1979).

  9. V. V. Bazutkin, V. P. Larionov, and Yu. S. Pintal, High-Voltage Engineering. Insulation and Overvoltages in Electrical Systems [in Russian], sEnergoatomizdat, Moscow (1986).

  10. Михалков A. V. Mikhalkov, High-Voltage Engineering in Examples and Problems [in Russian], Energiya, Moscow (1988).

  11. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge: Course book for higher educational institutions, MFTI, Moscow (1997).

    Google Scholar 

  12. X. Yao, N. Jiang, J. Li, et al., Chem. Eng. J. (2018). DOI: https://doi.org/10.1016/j.cej.2018.12.151.

    Article  Google Scholar 

  13. J.-S. Chang, P. A. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci., 19, No. 6, 1152–1166 (1991). DOI: https://doi.org/10.1109/27.125038.

    Article  ADS  Google Scholar 

  14. Wu Sh., Cheng W., Huang G., et al. // Phys. Plasmas, 25, 123507 (2018). DOI: 0.1063/1.5042669.

  15. V. F. Tarasenko, E. K. Baksht, Е. А. Sosnin, et al., Plasma Phys. Rep., 44, No. 5, 520–532 (2018).

    Article  ADS  Google Scholar 

  16. S. B. Afanasiev, D. S. Lavrenyuk, I. N. Petrushenko, and Yu. K. Stishkov, Tech. Phys., 78, Iss. 7, 30–34 (2008).

    Google Scholar 

  17. Z. Kexin, P. Yongjun, T. Miao, et al., J. Phys.: Conf. Ser., 652,012016 (2015). DOI: https://doi.org/10.1088/1742-6596/652/1/012016.

    Article  Google Scholar 

  18. L. B. Loeb, Fundamental Processes of Electrical Discharges in Gases, John Wiley & Sons, NY (1939).

  19. G. W. Trichel, Phys. Rev., 54, No. 12, 1078–1084 (1938). DOI: https://doi.org/10.1103/physrev.54.1078.

    Article  ADS  Google Scholar 

  20. Yu. K. Stishkov, A. V. Samusenko, A. S. Subbotskii, and A. N. Kovalev, Tech. Phys., 55, Iss. 11, 1569–1576 (2010). https://doi.org/10.1134

    Article  Google Scholar 

  21. B. B. Baldanov and Ch. N. Norboev, Prikl. Fiz., No. 3, 93–95 (2009).

  22. B. A. Kozlov and V. I. Soloviev, Tech. Phys., 79, Iss. 5, 18–28 (2009).

    Google Scholar 

  23. J. Zhang, Y. Wang, and D. Wang, IEEE Trans. Plasma Sci., 1, 19–24 (2018).

    Article  ADS  Google Scholar 

  24. D. V. Beloplotov, M. I. Lomaev, V. F. Tarasenko, and D. A. Sorokin, JETP Lett., 107, No. 10, 606–611 (2018).

    Article  ADS  Google Scholar 

  25. D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, Phys. Plasmas, 25, No. 8, 083511 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kuznetsov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 149–154, May, 2019. Original

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.S., Tarasenko, V.F. & Sosnin, E.A. On Pulsed Modes of the Glowing Corona Region. Russ Phys J 62, 893–899 (2019). https://doi.org/10.1007/s11182-019-01793-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01793-x

Keywords

Navigation