Skip to main content
Log in

Atomic Models of Mechanical Twinning and <110>-Reorientations in BCC-Crystals

  • Published:
Russian Physics Journal Aims and scope

A Correction to this article was published on 01 October 2019

This article has been updated

Atomic models of twinning and formation of <110>-reorientation bands in bcc-crystals via bcc→fcc→bcctransformations accompanied by a change in the reverse transformation system are proposed. It is shown that {112} deformation twins are formed in the course of these transformations, when the shears and directions of homogeneous deformation of the reverse transformation occur in the crystallographically equivalent directions, making 60° angles with the initial direction (during the forward transformation) and the Kurdyumov–Sachs relations are valid. A fulfillment of the Nishiyama–Wassermann orientation relationships or a change in the type such dependence in the course of the reverse transformations gives rise to reorientation of the crystal lattice of these microbands around the <110>-type directions by the angles 60° or (60 ± 5.23)°. An important feature of these models is a considerable contribution of homogeneous transformation deformation of the martensitic type into the value of plastic deformation of the twin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 08 November 2019

    At the end of the article the acknowledgement should be added: “This work was financially supported by a grant from the Russian Science Foundation (project No. 17-19-01374)”.

References

  1. Y. T. Zhu, X. Z. Liao, and X. L. Wu, Prog. Mater. Sci., 57, 1–62 (2012).

    Article  Google Scholar 

  2. J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley & Sons, Inc. (1982).

  3. X. Z. Liao, F. Zhou, E. J. Lavernia, et al., Appl. Phys. Lett., 83, 5062–5064 (2003).

    Article  ADS  Google Scholar 

  4. K. S. Kumar, H. Van Swygenhoven, S. Suresh, et al., Acta Mater., 51, 5743–5774 (2003).

    Article  Google Scholar 

  5. Y. Zhang, D. J. Yu, and K. M. Wang, J. Mater. Sci. Technol., 28, No. 2, 164–168 (2012).

    Article  Google Scholar 

  6. Zhang Y., Millett P. C., Tonks M., et al., Acta Mater., 60, 6421–6428 (2012).

    Article  Google Scholar 

  7. A. V. Korchuganov, A. N. Tyumentsev, K. P. Zolnikov, et al., J. Mater. Sci. Technol., 35, 201–206 (2019).

    Article  Google Scholar 

  8. K. P. Zolnikov, A. V. Korchuganov, and D. S. Kryzhevich, Comput. Mater. Sci., 155, 312–319 (2018).

    Article  Google Scholar 

  9. Yu. Ivanisenko, I. MacLaren, X. Sauvage, et al., Acta Mater., 54, 1659–1669 (2006).

    Article  Google Scholar 

  10. S. J. Wang, H. Wang, K. Du, et al., Nature Commun., 5, 3433 (2014).

    Article  ADS  Google Scholar 

  11. A. Latapie and D. Farkas, Modelling Simul. Mater. Sci. Eng., 11, 745–753 (2003).

    Article  ADS  Google Scholar 

  12. A. N. Tyumentsev, I. Yu. Litovchenko, Yu. P. Pinzhin, et al., Dokl. Akad. Nauk, 403, No. 5, 623–626 (2005).

    Google Scholar 

  13. A. N. Tyumentsev, N. S. Surikova, I.Yu. Litovchenko, et al., Acta Mater., 52, 2067–2074 (2004).

    Article  Google Scholar 

  14. A. N. Tyumentsev, Yu. P. Pinzhin, I. A. Ditenberg, et al., Zh. Fiz. Mezomekh., 9, No. 3, 33–45 (2006).

    Google Scholar 

  15. A. N. Tyumentsev, I. A. Ditenberg, A. S.Tsverova, et al., Problems of Atomic Science and Technology. Thermonuclear Fusion, 41, Iss. 4, 48–64 (2018).

    Google Scholar 

  16. F. A. Kassan-Ogly, V. E. Naysh, and I. V Sagardze, Fiz. Met. Metalloved., 65, No. 3, 481–492 (1988).

    Google Scholar 

  17. I. A. Ditenberg, A. N. Tyumentsev, Russ. Phys. J., 53, No. 7, 706–713 (2010).

    Article  Google Scholar 

  18. I. A. Ditenberg, A. N. Tyumentsev, and Ya. V. Shuba, Russ. Phys. J., 53, No. 8, 809–817 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Litovchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 142–148, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litovchenko, I.Y., Tyumentsev, A.N. Atomic Models of Mechanical Twinning and <110>-Reorientations in BCC-Crystals. Russ Phys J 62, 886–892 (2019). https://doi.org/10.1007/s11182-019-01792-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01792-y

Keywords

Navigation