Skip to main content
Log in

Surface Instability of Thermodynamically Non-equilibrium Liquid Metal in Electric Field

  • Published:
Russian Physics Journal Aims and scope

The mathematical theory of stability requires the analysis of the time evolution of arbitrary perturbations of the initial conditions in the system. However, in real systems arbitrary perturbations are possible only in thermodynamically non-equilibrium states. This paper deals with the surface stability of the liquid metal in electric field. The paper proposes the relevant theory, which differs from the Larmor–Tonks–Frenkel instability and experimentally confirmed by Serkov, et al. It is shown that the introduction of the dependence between the surface tension and curvature in the Larmor–Tonks–Frenkel instability changes the critical electric intensity by not over 5%. It is found that as a result of the Larmor–Tonks–Frenkel instability, the dependence between the critical electric intensity and the liquid metal temperature is (1 – T/T0)1/3, whereas in the proposed theory, this dependence is not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Non-Linear Physics [in Russian]. Nauka, Moscow (1988).

  2. V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability Analysis of Nonlinear Systems. M. Dekker, New York (1989), pp. 249–275.

  3. M. L. Goldberger and K. M. Watson, Phys. Rev., 134, B919 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. D. Gabovich, Phys. Usp,, 140, No. 5, 137–151 (1983).

  5. J. Eggers, Rev. Mod. Phys., 69, 865 (1997).

    Article  ADS  Google Scholar 

  6. R. J., Forbes L., Graeme and R. Mair, Liquid Metal Ion Sources: Handbook of Charged Particle Optics. CRC Press, Boca Raton (2017).

    Chapter  Google Scholar 

  7. B. A. Zon, Phys. Lett. A, 292, 203–206 (2001).

    Article  ADS  Google Scholar 

  8. L. A. Tonks, Phys. Rev., 48, 562–568 (1935).

    Article  ADS  Google Scholar 

  9. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuum Media [in Russian]. Nauka, Moscow (1982).

  10. A. A. Serkov, E. V. Barmina, G. A. Shafeev, and V. V. Voronov, Appl. Surf. Sci., 348, 16–21 (2015).

    Article  Google Scholar 

  11. J. Larmor, Proc. Camb. Phil. Soc., 7, 69–72 (1890).

  12. Ya. I. Frenkel, Zh. Eksp. Teor. Fiz., 6, No. 4, 348–350 (1936).

    Google Scholar 

  13. V. Alexiades and A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publ. Corp., Washington DC (1993).

  14. L. Nánai, I. Hevesi, N. F. Bunkin, et al., Appl. Phys. A, 50, 27–34 (1990).

  15. B. A. Zon, S. B. Ledovskii, and A. N. Likholet, Tech. Phys. Russ. J. Appl. Phys., 45, No. 4, 419–422 (2000); 43, No. 4, 416–422 (1998).

  16. J. R. Melcher, Theoretical and Applied Mechanics. Springer, Heidelberg; Berlin (1973), pp. 240–263.

    Chapter  Google Scholar 

  17. D. F. Belonozhko, S. O. Shiryaeva, and A. I. Grigor'ev, Non-Linear Waves on Charged Liquid Surface [in Russian]. Yaroslavl (2006).

  18. T. P. Martin, Phys. Rep., 273, 199–241 (1996).

    Article  ADS  Google Scholar 

  19. J. Strutt, 3rd Baron Rayleigh. The Theory of Sound [Russian translation]. GITTL, Moscow (1955).

  20. A. M. Ganán-Calvo , J. M. López-Herrera, M. A. Herrada, et al., J. Aerosol Sci., 125, 32–56 (2018).

    Article  ADS  Google Scholar 

  21. R. C. Tolman, J. Chem. Phys., 17, 333–337 (1949).

    Article  ADS  Google Scholar 

  22. A. V. Dolgikh, D. L. Dorofeev, and B. A. Zon, Phys. Rev. E, 67, 056311 (2003)

  23. A. V. Dolgikh, D. L. Dorofeev, and B. A. Zon, Fluid Dynam., 42, No. 2, 282–286 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  24. V. I. Grafutin and E. P. Prokop'ev, Phys. Usp., 172, No. 1, 67–83 (2002).

    Article  Google Scholar 

  25. S. Ono and S. Kondo, Structure of Liquids. Struktur der Flüssigkeiten. Encyclopedia of Physics. Handbuch der Physik. Springer, Berlin; Göttingen; Heidelberg (1960).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Zon.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 118–125, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zon, B.A. Surface Instability of Thermodynamically Non-equilibrium Liquid Metal in Electric Field. Russ Phys J 62, 861–869 (2019). https://doi.org/10.1007/s11182-019-01788-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01788-8

Keywords

Navigation