Russian Physics Journal

, Volume 62, Issue 5, pp 848–853 | Cite as

Synthesis of Single-Layer ZrN-Coatings Using Vacuum-Arc Plasma-Assisted Deposition with Plasma Flow Filtering

  • O. V. KrysinaEmail author
  • V. V. Shugurov
  • N. A. Prokopenko
  • E. A. Petrikova
  • O. S. Tolkachev
  • Yu. A. Denisova

The coatings based on ZrN are formed by the vacuum-arc plasma-assisted process under the conditions of plasma filtering from the droplet phase. A comprehensive investigation of the coating properties, elemental and phase compositions, and structure is performed by the methods of present-day materials science. The modes of deposition, at which the resulting coatings exhibit the lowest roughness (0.03 μm), the highest hardness (up to 30.5 GPa), a relatively low friction coefficient (0.39), and a low wear parameter (up to 2.2·10–6 mm3/(N·m)), are determined. Using the X-ray diffraction data, it is identified that the coatings consist of ZrN-crystallites with a cubic-lattice.


vacuum-arc plasma-assisted deposition plasma flow filtering ZrN-coatings arc discharge properties structure friction coefficient wear resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Andreev, L. P. Sablev, V. M. Shulaev, and S. N. Grigoriev, Vacuum-Arc Facilities and Coatings [in Russian], NNC KHFTI, Kharkov (2005).Google Scholar
  2. 2.
    O. V. Krysina, Yu. F. Ivanov, I. M. Goncharenko, et al., High Temp. Mater. Process., 17(2–3), 153–160 (2013).CrossRefGoogle Scholar
  3. 3.
    Yu. F. Ivanov, N. N. Koval, O. V. Krysina, et al., Surf. Coat. Technol., 207, 430–434 (2012).CrossRefGoogle Scholar
  4. 4.
    V. A. Barvinok and V. I. Bogdanovich, Physical Foundations and Mathematical Modeling of Processes of Vacuum Ion-Plasma Deposition [in Russian], Mashinostroyeniye, Moscow (1999).Google Scholar
  5. 5.
    A. Anders, Cathodic Arcs: From Fractal Sports to Energetic Condensation, Springer, N. Y. (2008).Google Scholar
  6. 6.
    D. S. Aksenov, I. I. Aksenov, and V. E. Strelnitskii, Vopr. Atom. Nauki i Tekhn., No. 2, 190–202 (2007).Google Scholar
  7. 7.
    L. G. Vintizenko, S. V. Grigoriev, N. N. Koval, et al., Russ. Phys. J., 44, No. 9, 927–936 (2001).CrossRefGoogle Scholar
  8. 8.
    O. V. Sobol’, A. A. Andreev, V. F. Gorban’, et al., Tech. Phys., 86, Iss. 7, 100–103 (2016).Google Scholar
  9. 9.
    Yu. S. Kotov and, G. Ya. Belyaev, Russian-Belorussian University Bulletin [in Russian], No. 2(39), 63–70 (2013).Google Scholar
  10. 10.
    A. D. Pogrebnyak, O. V. Sobol’, et al., Pis’ma ZhTF, 35, Iss. 19, 103–110 (2009).Google Scholar
  11. 11.
    S. Ya., Betsofen, L. M. Petrov, A. A. Ilyin, et al., Poverhnost. Rentg., Sinhrotr., Neytron. Issled., No. 1, 39–45 (2004).Google Scholar
  12. 12.
    A. A. Kalushevich, N. N. Koval, V. V. Denisov, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 55, No. 12/3, 118–122 (2012).Google Scholar
  13. 13.
    O. V. Krysina, N. N. Koval, I. V. Lopatin, et al., J. Phys.: Conf. Ser., 669, 012032 (2016).Google Scholar
  14. 14.
    A. I. Dodonov and V. M. Bashkov, Generation of Electric-Arc Plasma in a Curvilinear Plasma Guide and Deposition of a Coating on a Substrate, RF Patent of Invention, RU 97/00106 (04.04.1997).Google Scholar
  15. 15.
    V. V. Shugurov, N. N. Koval, N. A. Prokopenko, Izv. Vyssh. Uchebn. Zaved. Fiz., 58, No. 9/2, 283–286 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. V. Krysina
    • 1
    Email author
  • V. V. Shugurov
    • 1
  • N. A. Prokopenko
    • 1
  • E. A. Petrikova
    • 1
  • O. S. Tolkachev
    • 1
  • Yu. A. Denisova
    • 1
  1. 1.High-Current Electronics Institute of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations