Skip to main content
Log in

Adomyan Decomposition Method for a Two-Component Nonlocal Reaction-Diffusion Model of the Fisher–Kolmogorov–Petrovsky–Piskunov Type

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

We consider an approach to constructing approximate analytical solutions for the one-dimensional twocomponent reaction-diffusion model describing the dynamics of population interacting with the active substance surrounding the population. The system of model equations includes the nonlocal generalized Fisher–Kolmogorov–Petrovsky–Piskunov equation for the population density and the diffusion equation for the density of the active substance. Both equations contain additional terms describing the mutual influence of the population and the active substance. To find approximate solutions of the system of model equations, we first use the perturbation method with respect to the small parameter of interaction between the population and the active substance. Then we apply the well-known iterative method developed by G. Adomian to solve equations for terms of perturbation series. In the method proposed, the solution is presented as a series whose terms are determined by the corresponding iterative procedure. In this work, the diffusion operator is taken as the operator for which the inverse operator is expressed in terms of the diffusion propagator. This allows one to find the approximate solutions in the class of functions decreasing at infinity. As an illustration, we consider an example of solving the Cauchy problem for the initial functions of a Gaussian form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Murray, Mathematical Biology I. An Introduction, Springer Verlag, New York; Berlin; Heidelberg (2001).

    Google Scholar 

  2. V. K. Vanag, Dissipative Structures in Reaction-Diffusion Systems. Experiment and Theory [in Russian], Publishing House of Space Research Institute, Moscow (2008).

    Google Scholar 

  3. A. V. Shapovalov and V. V. Obukhov, Russ. Phys. J., 61, No. 6, 1093–1099 (2018).

    Article  Google Scholar 

  4. A. V. Shapovalov and A. Yu. Trifonov, Symmetry, 11, No. 3, 366 (19 pp.) (2019); DOI: https://doi.org/10.3390/sym11030366.

    Article  Google Scholar 

  5. V. P. Maslov, The Complex WKB Method for Nonlinear Equations I. Linear Theory, Series Progress in Mathematical Physics (Book 16), Birkhäuser, Basel (1994).

    Google Scholar 

  6. V. V. Belov and S. Yu. Dobrokhotov, Theor. Math. Phys., 92, No. 2, 215–254 (1992).

    Article  Google Scholar 

  7. A. V. Shapovalov and A. Yu. Trifonov, Russ. Phys. J., 62, No. 4, 710–719 (2019).

    Article  Google Scholar 

  8. G. Adomian, J. Math. Analys. Appl., 135, 501–544 (1988).

    Article  MathSciNet  Google Scholar 

  9. G. Adomian and R. Rach, J. Math. Anal. Appl., 174, 118–137 (1993).

    Article  MathSciNet  Google Scholar 

  10. J.-S. Duan and R. Rach, Appl. Math. Comput., 218, 4090–4118 (2011).

    MathSciNet  Google Scholar 

  11. A.-W. Wazwaz, Appl. Math. Comput., 166, 652–663 (2005).

    MathSciNet  Google Scholar 

  12. T. A. Abassy, Comput. Math. Appl., 59, 42–54 (2010).

    Article  MathSciNet  Google Scholar 

  13. J.-S. Duan, T. Chaolu, R. Rach, and L. Lu, Comput. Math. Appl., 66, 728–736 (2013).

    Article  MathSciNet  Google Scholar 

  14. Y. Daoud and A. A. Khidirn, Propuls. Power Res., 7, No. 3, 231–237 (2018).

    Article  Google Scholar 

  15. E. Simbawa, Comput. Math. Meth. Med., 2017, Article ID 367629 (7 pp.) (2017).

  16. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  17. H. Risken, The Fokker–Planck Equation: Methods of Solution and Applications, Springer, Berlin (1989).

    Book  Google Scholar 

  18. C. Lee, K.-D. Zhu, and J.-C. Chen, Phys. Rev. E, 88, No. 054103 (3 pp.) (2013).

  19. A. Lorz, T. Lorenzi, M. E. Hochberg, et al., ESAIM: Math. Model. Analys., 47, No. 2, 377–399 (2013).

    Article  Google Scholar 

  20. J. Nicoll, E. A. Gorbunov, S. A. Tarasov, and O. I. Epstein, Int. J. Endocrinol., 2013, 925874 (2013).

    Article  Google Scholar 

  21. O. Epstein, Symmetry, 10, No. 4, 103 (14 pp.) (2018).

  22. A. E. Arinshtein, J. Exp. Theor. Phys., 101, No. 4, 1209–1212 (1992).

    Google Scholar 

  23. V. K. Oikonomou, Symmetry, 10, No. 9, 368 (9 pp.) (2018).

  24. S. G. Samko, A. A. Kilbas, and O. I. Mariche, Integrals and Derivatives of a Fractional Order and Some Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).

  25. V. VF. Uchaikin, Usp. Fiz. Nauk, 173, No. 8, 847–875 (2003).

    Article  Google Scholar 

  26. J.-S. Duan, T. Chaolu, R. Rach, and L. Lu, Comput. Math. Appl., 66, 728–736 (2013).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shapovalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 95–105, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapovalov, A.V., Trifonov, A.Y. Adomyan Decomposition Method for a Two-Component Nonlocal Reaction-Diffusion Model of the Fisher–Kolmogorov–Petrovsky–Piskunov Type. Russ Phys J 62, 835–847 (2019). https://doi.org/10.1007/s11182-019-01785-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01785-x

Keywords

Navigation