Skip to main content
Log in

Admittance Characteristics of nBn Structures Based on Hgcdte Grown by Molecular Beam Epitaxy

  • Published:
Russian Physics Journal Aims and scope

For the first time, the admittance of nBn structures based on HgCdTe grown by molecular beam epitaxy was experimentally investigated in a wide range of frequencies and temperatures. The CdTe content in the barrier layer of studied samples varied from 0.74 to 0.83, and the thickness of this layer was from 210 to 300 nm. The experimental frequency dependences of the admittance of nBn structures are in good agreement with the results of calculation by the equivalent circuit method. The proposed equivalent circuit consists of two seriesconnected chains, each of which contains a capacitance and a resistance connected in parallel. The change in the values of the equivalent circuit elements during heating from 9 to 300 K and under application of the bias voltage was studied. It is shown for the first time that illumination of nBn structures based on HgCdTe by radiation with a wavelength of 0.91 μm causes relaxation of values of the equivalent circuit parameters for hundreds of minutes after the illumination is turned off. Mechanisms of the equivalent circuit element formation, as well as peculiarities of the admittance dependences at various parameters of the barrier layers, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Kinch State-of-the-Art Infrared Detector Technology, SPIE Press, Bellingham, Washington (2014).

    Book  Google Scholar 

  2. A. Rogalski, Infrared detectors: 2nd. ed., CRC Press, Taylor & Francis Group, New York (2010).

    Book  Google Scholar 

  3. S. Maimon and G. W. Wicks, Appl. Phys. Lett., 89, No. 15, 151109 (2006).

    Article  ADS  Google Scholar 

  4. J. R. Pedrazzani, S. Maimon, and G. W. Wicks, Electron. Lett., 44, No. 25, 1487–1488 (2008).

    Article  Google Scholar 

  5. M. Reine, B. Pinkie, J. Schuster, et al., J. Electron. Mater., 43, No. 8, 2915– 2934 (2014).

    Article  ADS  Google Scholar 

  6. D. Z. Ting, A. Soibel, A. Khoshakhlagh, et al., Opt. Eng., 56, No. 9, 091606 (2017).

    Article  ADS  Google Scholar 

  7. A. Soibel, S. A. Keo, A. Fisher, et al., Appl. Phys. Lett., 112, No. 4, 041105 (2018).

    Article  ADS  Google Scholar 

  8. E. Delli, V. Letka, P. D. Hodgson, et al., ACS Photonics, 6, No. 2,. 538–544 (2019).

    Article  Google Scholar 

  9. A. M. Itsuno, J. D. Phillips, and S. Velicu, J. Electron. Mater., 40, No. 8 ,1624– 1629 (2011).

    Article  ADS  Google Scholar 

  10. P. Martyniuk, M. Kopytko, and A. Rogalski, Opto-Electron. Rev., 22, No. 2, 127–146 (2014).

    ADS  Google Scholar 

  11. A. V. Voitsekhovskii and D. I. Gorn, J. Commun. Technol. Electron., 62, No. 3, 314–316 (2017).

    Article  Google Scholar 

  12. N. D. Akhavan, G. A. Umana-Membreno, R. Gu, et al., IEEE Trans. Electron. Dev., 65, No. 10, 4340–4345 (2018).

    Article  ADS  Google Scholar 

  13. M. A. Kinch, J. Electron. Mater., 44, No. 9, 2969–2976 (2015).

    Article  ADS  Google Scholar 

  14. J. Piotrowski and A. Rogalski, Hot-Operating-Temperature Infrared, SPIE Press, Bellingham, Washington (2007).

    Book  Google Scholar 

  15. F. Uzgur and S. Kocaman, Infrared Phys. Technol., 97, 123–128 (2019).

    Article  ADS  Google Scholar 

  16. N. D. Akhavan, G. Jolley, G. A. Umana-Membreno, et al., J. Electron. Mater., 44, No. 9, 3044–3055 (2015).

    Article  ADS  Google Scholar 

  17. Z. H. Ye, Y. Y. Chen, P. Zhang, et al., Proc. SPIE, 9070, 90701L (2014).

  18. M. Kopytko, J. Wróbel, K. Jóźwikowski, et al., J. Electron. Mater., 44, No. 1, 158–166 (2015).

    Article  ADS  Google Scholar 

  19. A. V. Voitsekhovskii, D. I. Gorn, S. A. Dvoretskii, et al., Prikladn. Fiz., No. 5, 50–54 (2018).

  20. A. M. Itsuno, J. D. Phillips, and S. Velicu, Appl. Phys. Lett., 100, No. 16, 161102 (2012).

    Article  ADS  Google Scholar 

  21. S. Velicu, J. Zhao, M. Morley, et al., Proc. SPIE, 8268, 826282X (2012).

    Google Scholar 

  22. O. Gravrand, F. Boulard, A. Ferron, et al., J. Electron. Mater., 44, No. 9 , 3069– 3075 (2015).

    Article  ADS  Google Scholar 

  23. M. Kopytko, A. Kębłowski, W. Gawron, et al., Opto-Electron. Rev., 21, No. 4, 402–405 (2013).

    Article  ADS  Google Scholar 

  24. M. Kopytko, A. Kębłowski, W. Gawron, et al., Opto-Electron. Rev., 23, No. 2, 143–148 (2015).

    Article  ADS  Google Scholar 

  25. H. Hirwa, S. Pittner, and V. Wagner, Org. Electron., 24, 303–314 (2015).

    Article  Google Scholar 

  26. I. I. Izhnin, S. N. Nesmelov, S. M. Dzyadukh, et al., Nanoscale Res. Lett., 11, 53 (2016).

    Article  ADS  Google Scholar 

  27. J. V. Li and G. Ferrari, Capacitance Spectroscopy of Semiconductors, Pan Stanford Publishing, Singapore (2018).

    Book  Google Scholar 

  28. D. R. Rhiger, E. P. Smith, B. P. Kolasa, et al., J. Electron. Mater., 45, No. 9, 4646–4653 (2016).

    Article  ADS  Google Scholar 

  29. P. Klipstein, O. Klin, S. Grossman, et al., Proc. SPIE, 7608, 76081V (2010).

    Article  Google Scholar 

  30. J. P. Perez, A. Evirgen, J. Abautret, et al., Proc. SPIE, 9370, 93700N (2015).

    Article  Google Scholar 

  31. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Prikladn. Fiz., No. 4, 43–48 (2018).

  32. R. Fu and J. Pattison, Opt. Eng., 51, No. 10, 104003 (2012).

    Article  ADS  Google Scholar 

  33. P. Zhang, Z. H. Ye, C. H. Sun, et al., J. Electron. Mater., 45, No. 9 , 4716–4720 (2016).

    Article  ADS  Google Scholar 

  34. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York et al. (1982).

  35. S. M. Sze and K. Ng Kwok, Physics of Semiconductor Devices, 3rd ed., Wiley, N. Y. (2007).

    Google Scholar 

  36. M. Ershov, H. C. Liu, L. Li, et al., IEEE Trans. Electron. Dev., 45, No. 10, 2196– 2206 (1998).

    Article  ADS  Google Scholar 

  37. N. A. Penin, Fiz. Tekh. Poluprovodn., 30, No. 4, 626–634 (1996).

    Google Scholar 

  38. B. K. Jones, J. Santana, M. McPherson, et al., Sol. State Commun., 107, No. 2, 47–50 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 77–85, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Admittance Characteristics of nBn Structures Based on Hgcdte Grown by Molecular Beam Epitaxy. Russ Phys J 62, 818–826 (2019). https://doi.org/10.1007/s11182-019-01783-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01783-z

Keywords

Navigation