Skip to main content
Log in

Cosmological and Quantum Solutions of the Navier–Stokes Equations

  • Published:
Russian Physics Journal Aims and scope

It is shown that the vector Navier–Stokes equation has a variety of quantum solutions, so the scope of this equation is not limited to the field of classical Newtonian physics, but also includes quantum physics. On this basis, it is shown that the homogeneous quantum velocity is globally defined at all moments in time, is a globally smooth and bounded function, which falls exponentially, and that the kinetic energy is also globally bounded. Its quantum solutions do not depend on the Planck constant, which is instead automatically replaced in the Navier–Stokes equation by its hydrodynamic analog \( \tilde{h}=2 mD>>\mathrm{\hslash}. \) The Navier–Stokes equation gives a deterministic description of the dynamics of a fluid both with respect to the wave function and with respect to velocities. It is shown that taking relativistic effects into account, the Navier–Stokes equation can have a physically meaningful, classical, globally smooth solution of Hubble type, which modifies the isotropic energy-dominance condition, eliminates the cosmological singularity, and accords with the observational data indicating that the Hubble parameter increases with time. The fine structure of the mathematical constants can contain information about interactions of matter. This fact can be used to solve problems on information loss in black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Lasukov and T. V. Lasukova, Russ. Phys. J., 57, No. 4, 490–497 (2014).

    Article  Google Scholar 

  2. V. V. Lasukov, Int. J. Geometric Methods Mod. Phys., 13, 1650020 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  3. V. V. Lasukov, Russ. Phys. J., 55, No. 10, 1157–1168 (2012).

    Article  MathSciNet  Google Scholar 

  4. M. A. Grabovskii, A. B. Mlodzeevskii, et al., Lecture Demonstrations in Physics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  5. V. V. Lasukov, Russ. Phys. J., 45, No. 2, 133–136 (2002).

    Article  MathSciNet  Google Scholar 

  6. R. Penrose, Phys. Rev. Lett., 14, 57 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. V. Lasukov and M. O. Abdramashitova, Russ. Phys. J., 61, No. 3, 566–578 (2018).

    Article  Google Scholar 

  8. V. G. Bagrov, V. V. Belov, V. N. Zadorozhnyi, and A. Yu. Trifonov, Methods of Mathematical Physics [in Russian], Publishing House of Scientific and Тechnology Literature, Tomsk (2002).

    Google Scholar 

  9. O. A. Ladyzhenskaya, Usp. Mat. Nauk, 58, No. 2, 45–78 (2003).

    Article  Google Scholar 

  10. A. N. Kolmogorov, Izv. Akad. Nauk SSSR, 6, No. 1, 56–58 (1942).

    Google Scholar 

  11. D. S. DeWitt, Phys. Rev. D, 160, 1113 (1967).

    Article  ADS  Google Scholar 

  12. D. S. DeWitt, Phys. Rev. D, 162, 1195 (1967).

    Article  ADS  Google Scholar 

  13. J. B. Hartle and S. W. Hawking, Phys. Rev., 28, 2960 (1983).

    ADS  MathSciNet  Google Scholar 

  14. A. Vilenkin, Phys. Lett. B, 117, 25 (1982).

    Article  ADS  Google Scholar 

  15. A. D. Linde, Phys. Lett. B, 129,177 (1983).

    Article  ADS  Google Scholar 

  16. A. D. Linde, Phys. Lett. B, 108, 389 (1982).

    Article  ADS  Google Scholar 

  17. A. A. Starobinsky, Phys. Lett. B, 91, 99 (1967).

    Article  ADS  Google Scholar 

  18. É. B. Gliner, Usp. Fiz. Nauk, 172, 221 (2002).

    Article  Google Scholar 

  19. É. B. Gliner, Zh. Eksp. Teor. Fiz., 49, 342 (1965).

    Google Scholar 

  20. I. G. Dymnikova, Phys. Lett. B, 472, 33 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  21. I. G. Dymnikova, Class. Quantum Grav., 21, 4417 (2004).

    Article  ADS  Google Scholar 

  22. I. G. Dymnikova, Class. Quantum Grav., 32, 165015 (2015).

    Article  ADS  Google Scholar 

  23. I. G. Dymnikova, Class. Quantum Grav., 33, 145010 (2016).

    Article  ADS  Google Scholar 

  24. I. G. Dymnikova, Gen. Rel. Grav., 24, 235 (1992).

    Article  ADS  Google Scholar 

  25. I. G. Dymnikova, Int. J. Mod. Phys., 5, 529 (1996).

    Article  ADS  Google Scholar 

  26. C. W. Misner and J. A. Wheeler, Ann. Phys., 2, 525 (1957).

    Article  ADS  Google Scholar 

  27. J. A. Wheeler, Ann. Phys., 2, 604–614 (1957).

    Article  ADS  Google Scholar 

  28. B. L. Al’tshuler and A. O. Barvinskii, Usp. Fiz. Nauk, 166, 46 (1996).

    Google Scholar 

  29. A. D. Linde, Elementary Particle Physics and Inflation Cosmology [in Russian], Nauka, Moscow (1990).

    Book  Google Scholar 

  30. V. A. Rubakov and D. S. Gorbunov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory, World Scientific Publishing Company, Singapore (2011).

    MATH  Google Scholar 

  31. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory, World Scientific Publishing Company, Singapore (2011).

    Book  Google Scholar 

  32. V. A. Rubakov, Teor. Mat. Fiz., 149, 409 (2006).

    Article  Google Scholar 

  33. V. N. Lukash and V. A. Rubakov, Usp. Fiz. Nauk, 178, 301 (2008).

    Article  Google Scholar 

  34. V. A. Rubakov, Usp. Fiz. Nauk, 177, 407 (2007).

    Article  Google Scholar 

  35. V. A. Rubakov, Usp. Fiz. Nauk, 171, 913 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lasukov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 40–53, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasukov, V.V. Cosmological and Quantum Solutions of the Navier–Stokes Equations. Russ Phys J 62, 778–793 (2019). https://doi.org/10.1007/s11182-019-01778-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01778-w

Keywords

Navigation