Skip to main content
Log in

Determination of the Radius of Triple Junctions of Tilt Boundaries: A Molecular Dynamics Simulation

  • Published:
Russian Physics Journal Aims and scope

Using the method of molecular dynamics, an investigation of the free volume and energy distribution is performed in the region of triple junctions of high-angle tilt boundaries with the <100> and <111> misorientation axes in nickel formed as a result of recrystallization. Crystallization is simulated from three crystalline nuclei for the varied free volume value. It is shown that during recrystallization the free volume is mainly concentrated in the region of grain boundaries and its fraction increases on approaching the grain-boundary junction. From the effective energy distribution in the region of triple junctions, their effective radius is determined. In the <100> tilt boundaries and their junctions, the free volume during recrystallization is dispersed more effectively that it is in the junctions formed by the <111> boundaries. For this reason, the energy radius of the triple junction of the <100> boundaries hardly varies with an introduction of a free volume: from 5 to 7 Å, while that of the junction of the <111> boundaries upon introduction of 2% vacancies into the initial computational cell becomes as large 14 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Palumbo and K. T. Aust, Scripta Metallurg. Mater., 24, 1771–1776 (1990).

  2. M. Wegner, J. Leuthold, M. Peterlechner, et al., J. Appl. Phys., 116, 093514 (2014).

    Article  ADS  Google Scholar 

  3. M. Yu. Gutkin and I. A. Ovidko, Usp. Mekh., No. 1, 68–125 (2003).

  4. P. Rodriguez, D. Sundararaman, R. Divakar, and V. S. Raghunathan, Chemistry for Sustainable Development, 8, 69–72 (2000).

    Google Scholar 

  5. T. Frolov and Y. Mishin, Phys. Rev. B, 79, 174110 (2009).

  6. I. Adlakha and K. N. Solanki, Sci. Rep., 5, 8692 (2015).

    Article  ADS  Google Scholar 

  7. G. M. Poletaev, D. V. Dmitrienko, V. V. Diabdenkov, et al., Phys. Solid State, 55, No. 9, 1920–1924 (2013).

    Article  ADS  Google Scholar 

  8. G. M. Poletaev, D. V. Novoselova, and V. M. Kaygorodova, Solid State Phenom., 249, 3–8 (2016).

  9. G. M. Poletaev, D. V. Novoselova, I. V. Zorya, and M. D. Starostenkov, Phys. Solid State, 60, No. 5, 847–851 (2018).

    Article  ADS  Google Scholar 

  10. F. Cleri and V. Rosato, Phys. Rev. B, 48, No. 1, 22–33 (1993).

    Article  ADS  Google Scholar 

  11. N. A. Kalabukhova, G. M. Poletaev, M. D. Starostenkov, et al., Russ. Phys. J., 54, No. 12, 1394–1400 (2012).

    Article  Google Scholar 

  12. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov,et al., Russ. Phys. J., 61, No. 7, 1236–1240 (2018).

    Article  Google Scholar 

  13. G. Poletaev, I. Zorya, andR. Rakitin, Computat. Mater. Sci., 148, 184–189 (2018).

    Article  Google Scholar 

  14. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, et al., JETP, J. Exp. Theor. Phys., 128, No. 1, 88–93 (2019).

  15. G. M. Poletaev, D. V. Dmitrienko, and M. D. Starostenkov, Fund. Proble. Sovr. Materialoved., 9, No. 3, 344–348 (2012).

    Google Scholar 

  16. M. A. Fortes andA. M. Deus, Mater. Sci. Forum., 455–456, 648–652 (2004).

  17. O. B. Perevalova, E. V. Konovalova, Koneva, and E. V. Kozlov, J. Mater. Sci. Technol., 19, No. 6, 593–596 (2003).

  18. C. C. Yang, A. D. Rollett, and W. W. Mullins, Scripta Mater., 44, 2735–2740 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Poletaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 109–114, April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Starostenkov, M.D., Rakitin, R.Y. et al. Determination of the Radius of Triple Junctions of Tilt Boundaries: A Molecular Dynamics Simulation. Russ Phys J 62, 680–686 (2019). https://doi.org/10.1007/s11182-019-01763-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01763-3

Keywords

Navigation