Cyclotron Production of 99Mo Radionuclide by Bombarding Zirconium Targets with Alpha Particle Beams

A possibility of manufacturing 99Mo via a nuclear reaction with 96Zr (α, n) in the R-7 cyclotron of the Tomsk polytechnic university is investigated. The beam energy of α-particles is 27 MeV for the beam current values 13, 15 and 22 μA. The targets are manufactured from natural zirconium shaped as disks measuring 30 mm in diameter and 1.5 mm in thickness. As a result of the experiments the designed yield of 99Mo is found to be on the order of (1.62 ± 0.15) (MBq/(μA·h) for 96Zr targets with 100% enrichment, which closely agrees with the yields reported by other authors. It is shown that a sufficient amount of 99Mo can be output for technetium-99m to be manufactured at a regional level.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Abbas, U. Holzwarth, F. Simonelli, et al., Nucl. Instrum. Methods Phys. Res., 278, 20–22 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    A. Tsechanski, A. F.Bielajew, J. P.Archambault, and E. Mainegra-Hing, Nucl. Instrum. Methods Phys. Res., 366, 124–127 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    A. Mushtaq, M. Iqbal, I. Bokhari, and A. Muhammad, Nucl. Instrum. Methods Phys. Res., 287, 35–36 (2012).

    ADS  Article  Google Scholar 

  4. 4.

    M. Pillai, A. Dash, and F. Knapp, J. Nucl. Med., 54, 313–318 (2013).

    Article  Google Scholar 

  5. 5.

    A. Lokhov, R. Cameron, C. Westmacott, et al., Technical Report, Nuclear Energy Agency (NEA) and Organization for Economic Co-operation and Development (OECD), IAEA-TECDOC-1601, 28– 31 (2010).

  6. 6.

    M. Naafs, BJSTR, 4, No. 5, 1–6 (2018).

  7. 7.

    M. Aboudzadeh, K. Aardaneh, G. Aslani, et al., Appl. Radiation and Isotopes, 112, 55–58 (2016).

    Article  Google Scholar 

  8. 8.

    V. Lisin, A. Bogdanov, V. Golovkov, et al., Rev. Sci. Instrum., – 2014. – V. 85, No. 2, 02C314-1–3 (2014).

  9. 9.

    E. Inglis, J. Creech, Z. Deng, and F. Moynier, Chem. Geology, 493, 544 – 552 (2018).

    ADS  Article  Google Scholar 

  10. 10.

    D. Chowdhury, S. Pal, S. Saha, and S. Gangadharan, Nucl. Instrum. Methods Phys. Res. B, 103, 264–266 (1995).

    ADS  Article  Google Scholar 

  11. 11.

    G. Pupillo, J. Esposito, M. Gambaccini, et al., J. Radioanal. Nucl. Chem., 302, No. 2, 913–916 (2014).

    Article  Google Scholar 

  12. 12.

    D. Rochman, A. Koning, J. Sublet, and M. Fleming, in: Proc. Int. Conf. on Nuclear Data for Science and Technology (2016). URL: https://tendl.web.psi.ch/tendl_2017/tendl2017.html (access date 09.07.2018).

  13. 13.

    NuDat 2.7 database. National Nuclear Data Center (NNDC), Brookhaven (2018). URL: http://www.nndc.bnl.gov/nudat2/ (access date 24.07.2018).

  14. 14.

    C. Emery and M. Strutt, British Geological Survey, Internal Report IR/04/174, 12–15 (2004).

  15. 15.

    J. Link, K. Krohn and M. O'Hara, Appl. Radiation and Isotopes, 122, 211–214 (2017).

    Article  Google Scholar 

  16. 16.

    International Atomic Energy Agency, Tech. Rep. Ser. No. 468, 261–264, IAEA, Vienna (2009).

  17. 17.

    V. S. Skuridin, Methods and Technologies for Manufacturing Radiopharmaceutical Products: a course book [in Russian], TPU, Tomsk (2012).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. E. Villa.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 43–47, April, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villa, N.E., Skuridin, V.S., Golovkov, V.M. et al. Cyclotron Production of 99Mo Radionuclide by Bombarding Zirconium Targets with Alpha Particle Beams. Russ Phys J 62, 605–609 (2019). https://doi.org/10.1007/s11182-019-01753-5

Download citation

Keywords

  • molybdenum-99
  • zirconium
  • cyclotron
  • technetium-99m