Russian Physics Journal

, Volume 62, Issue 4, pp 605–609 | Cite as

Cyclotron Production of 99Mo Radionuclide by Bombarding Zirconium Targets with Alpha Particle Beams

  • N. E. VillaEmail author
  • V. S. Skuridin
  • V. M. Golovkov
  • A. A. Garapatski

A possibility of manufacturing 99Mo via a nuclear reaction with 96Zr (α, n) in the R-7 cyclotron of the Tomsk polytechnic university is investigated. The beam energy of α-particles is 27 MeV for the beam current values 13, 15 and 22 μA. The targets are manufactured from natural zirconium shaped as disks measuring 30 mm in diameter and 1.5 mm in thickness. As a result of the experiments the designed yield of 99Mo is found to be on the order of (1.62 ± 0.15) (MBq/(μA·h) for 96Zr targets with 100% enrichment, which closely agrees with the yields reported by other authors. It is shown that a sufficient amount of 99Mo can be output for technetium-99m to be manufactured at a regional level.


molybdenum-99 zirconium cyclotron technetium-99m 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Abbas, U. Holzwarth, F. Simonelli, et al., Nucl. Instrum. Methods Phys. Res., 278, 20–22 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    A. Tsechanski, A. F.Bielajew, J. P.Archambault, and E. Mainegra-Hing, Nucl. Instrum. Methods Phys. Res., 366, 124–127 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    A. Mushtaq, M. Iqbal, I. Bokhari, and A. Muhammad, Nucl. Instrum. Methods Phys. Res., 287, 35–36 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    M. Pillai, A. Dash, and F. Knapp, J. Nucl. Med., 54, 313–318 (2013).CrossRefGoogle Scholar
  5. 5.
    A. Lokhov, R. Cameron, C. Westmacott, et al., Technical Report, Nuclear Energy Agency (NEA) and Organization for Economic Co-operation and Development (OECD), IAEA-TECDOC-1601, 28– 31 (2010).Google Scholar
  6. 6.
    M. Naafs, BJSTR, 4, No. 5, 1–6 (2018).Google Scholar
  7. 7.
    M. Aboudzadeh, K. Aardaneh, G. Aslani, et al., Appl. Radiation and Isotopes, 112, 55–58 (2016).CrossRefGoogle Scholar
  8. 8.
    V. Lisin, A. Bogdanov, V. Golovkov, et al., Rev. Sci. Instrum., – 2014. – V. 85, No. 2, 02C314-1–3 (2014).Google Scholar
  9. 9.
    E. Inglis, J. Creech, Z. Deng, and F. Moynier, Chem. Geology, 493, 544 – 552 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    D. Chowdhury, S. Pal, S. Saha, and S. Gangadharan, Nucl. Instrum. Methods Phys. Res. B, 103, 264–266 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    G. Pupillo, J. Esposito, M. Gambaccini, et al., J. Radioanal. Nucl. Chem., 302, No. 2, 913–916 (2014).CrossRefGoogle Scholar
  12. 12.
    D. Rochman, A. Koning, J. Sublet, and M. Fleming, in: Proc. Int. Conf. on Nuclear Data for Science and Technology (2016). URL: (access date 09.07.2018).
  13. 13.
    NuDat 2.7 database. National Nuclear Data Center (NNDC), Brookhaven (2018). URL: (access date 24.07.2018).
  14. 14.
    C. Emery and M. Strutt, British Geological Survey, Internal Report IR/04/174, 12–15 (2004).Google Scholar
  15. 15.
    J. Link, K. Krohn and M. O'Hara, Appl. Radiation and Isotopes, 122, 211–214 (2017).CrossRefGoogle Scholar
  16. 16.
    International Atomic Energy Agency, Tech. Rep. Ser. No. 468, 261–264, IAEA, Vienna (2009).Google Scholar
  17. 17.
    V. S. Skuridin, Methods and Technologies for Manufacturing Radiopharmaceutical Products: a course book [in Russian], TPU, Tomsk (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. E. Villa
    • 1
    Email author
  • V. S. Skuridin
    • 1
  • V. M. Golovkov
    • 1
  • A. A. Garapatski
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations