Skip to main content
Log in

The Influence of Surface Treatment on Wettability of TiNi-Based Alloy

  • Published:
Russian Physics Journal Aims and scope

The results of an investigation of surface wettability of TiNi-based alloys by water and DMEM-medium are presented. A comparative analysis of the wetting angle is performed after processing the specimens by grinding, sand blasting, oxidation in air, etching in a solution of acids, processing by vapor, hydrogen peroxide, and detergent solution in an ultrasonic bath. It is shown that oxidation in air and etching in acids increase the surface hydrophilic property of TiNi-based alloys. The highest hydrophilic value with the water wetting angle about 30° is achieved in the case of vapor treatment following sand blasting and treatment of the oxidized specimens with hydrogen peroxide. The differing influence of treatments on the wetting angle is attributed to variations in the surface energy of TiNi-based alloy specimens, which is affected by the microrelief and structural-chemical characteristics of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Gunther, KnE Mater. Sci., [S. l.] 1–9 (2017).

  2. M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Anal. Bioanal. Chem., 381, Iss. 3, 557–567 (2005).

    Article  Google Scholar 

  3. O. V. Kokorev, V. N. Khodorenko, G. A. Baigonakova, et al., Russ. Phys. J., 61, No. 9, 164–170 (2018).

    Google Scholar 

  4. R. A. Gittens, L. Scheideler, F. Rubb, et al., Acta Biomater., 10, No. 7, 2907– 2918 (2014).

    Article  Google Scholar 

  5. M. R. Warocquier-Cleront, C. Legris, M. Degrange, and M. F. Sigot-Luizard, J. Biomed. Mater. Res., 36, Iss. 1, 99–108 (1997).

    Article  Google Scholar 

  6. E. Eisenbarth, J. Meyle, W. Nachtigall, and J. Breme, Biomaterials, 17, No. 14, 1399–1403 (1996).

    Article  Google Scholar 

  7. T. Wassmann, S. Kreis, M. Behr, and R. Buergers, Int. J. Implant Dent., 3, No. 1, 32 (2017).

    Article  Google Scholar 

  8. M. Lotfi, M. Nejib, and M. Naceur, Advances in Biomaterials Science and Biomedical Applications (Ed. R. Pignatello), Intech, Rijeka, Croatia (2013).

    Google Scholar 

  9. H. Liu and S. Wang, Sci. China Chem., 57(4), 552–557 (2014).

    Article  Google Scholar 

  10. J. Schwartz, M. J. Avaltroni, M. P. Danahy, et al., Mater. Sci. Eng. C, 23, Iss. 3, 395–400 (2003).

    Article  Google Scholar 

  11. Gu Hanyang, Wang Chi, Gong Shengjie, et al., Surf. Coatings Technol., 292, 72–77 (2016).

    Article  Google Scholar 

  12. C. N.C. Lam, N. Kim, D. Hui, et al., Colloids Surf. A: Physicochem. Eng. Aspects, 189, Iss. 1–3, 265–278 (2001).

    Article  Google Scholar 

  13. M. Hilpert and A. Ben-David, Int. J. Multiphase Flow, 35, Iss. 3, 205–218 (2009).

    Article  Google Scholar 

  14. F. Rupp, L. Scheideler, and J. Geis-Gerstorfer, Chem. Eng. Technol., 25, No. 9, 877–882 (2002).

    Article  Google Scholar 

  15. K. S. Lee, N. Ivanova, V. M. Starov, et al., Adv. Colloid Interface Sci., 144, No. 1–2, 54–65 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Yasenchuk.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 133–138, February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasenchuk, Y.F., Gunther, S.V., Kokorev, O.V. et al. The Influence of Surface Treatment on Wettability of TiNi-Based Alloy. Russ Phys J 62, 333–338 (2019). https://doi.org/10.1007/s11182-019-01716-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01716-w

Keywords

Navigation