Russian Physics Journal

, Volume 62, Issue 1, pp 156–166 | Cite as

Method of Modeling Optoacoustic Signals in Composites Transparent Matrix – Metal Nanoparticles

  • M. V. Anan’evaEmail author
  • A. A. Zvekov
  • A. V. Kalenskii
  • B. P. Aduev

Method of modeling optoacoustic signals initiated by a laser pulse in composites transparent matrix – metal nanoparticles taking into account melting processes has been developed and tested. The method consists in calculating the function of pressure sources depending on time and coordinate and its convolution with the Green’s function of the one-dimensional wave equation. Testing has been performed for composites of pentaerythritol tetranitrate with 50 nm radius aluminum nanoparticles that are important for practical applications. The melting is characterized by an increase in the specific volume and leads to an increase in the amplitude of the maximum of the source function and the appearance of the area of its negative values. The dependences have been calculated of the effective growth constant of the optoacoustic signal and its amplitude on the pulse energy density that must be taken into account in this method. The results are important for the development of methods of nondestructive testing and prediction of functioning of photonic devices and optical detonators containing nanoparticles.


optoacoustic spectroscopy metal nanoparticles melting laser irradiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. É. Gusev and A. A. Karabutov, Laser Optoacoustics, AIP Publishing, New York (1993).Google Scholar
  2. 2.
    B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, et al., Opt. Spectrosc., 124, No. 3, 412–417 (2018).CrossRefGoogle Scholar
  3. 3.
    Th. Schmid, Anal. Bioanal. Chem., 384, No. 5, 1071–1086 (2006); DOI: Scholar
  4. 4.
    J.-P. Monchalin, L. Bertrand, and G. Rousset, J. Appl. Phys., 56, 190 (1984); Scholar
  5. 5.
    J. Xia, J. Yao, and L. V. Wang, Prog. Electromagn. Res., 147, 1–22 (2014).CrossRefGoogle Scholar
  6. 6.
    T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, et al., Eur. Phys. J. Special Topics, 153, No. 1, 361–364 (2008); Scholar
  7. 7.
    B. P. Aduev, D. R. Nurmukhametov, A. A. Zvekov, and A. V. Kalenskii, Combust. Expl. Shock Waves, 52, No. 6, 713–718 (2016).CrossRefGoogle Scholar
  8. 8.
    A. V. Kalenskii, A. A. Zvekov, A. P. Nikitin, and B. P. Aduev, Тhermophys. Aeromech., 23, No. 2 (98), 261–269 (2016).CrossRefGoogle Scholar
  9. 9.
    M. W. Knight, N. S. King, L. Liu, et al., ACS Nano, 8, No. 1, 834–840 (2014).CrossRefGoogle Scholar
  10. 10.
    P. K. Parashar, R. P. Sharma, and V. K. Komarala, J. Appl. Phys., 120, 143104 (2016).CrossRefGoogle Scholar
  11. 11.
    R. S. Burkina, E. Yu. Morozova, and V. P. Tsipilev, Comb. Expl. Shock Waves, 47, No. 5, 581–590 (2011).CrossRefGoogle Scholar
  12. 12.
    B. P. Aduev, D. R. Nurmukhametov, G. M. Belokurov, et al., Тech. Phys., 59, No. 9, 581–590 (2014).Google Scholar
  13. 13.
    S. C. Gupta, The Classical Stefan Problem. Basic Concepts, Modeling and Analysis with Quasi-Analytical Solutions and Methods, Elsevier, 2018.Google Scholar
  14. 14.
    A. V. Lykov, Theory of Thermal Conductivity [in Russian], Vysshaya Shkola, Moscow (1967).Google Scholar
  15. 15.
    R. D. Groot, J. Comput. Phys. (2018);
  16. 16.
    S. P. Zhvavyi, Тech. Phys., 45, No. 8, 1014–1018 (2000).Google Scholar
  17. 17.
    I. K. Kikoin, Tables of Physical Quantities: A Handbook [in Russian], Atomizdat, Moscow (1975).Google Scholar
  18. 18.
    Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 2, Wiley & Sons (1998), p. 93.Google Scholar
  19. 19.
    B. W. Olinger and H. H. Cady, in: Proc. 6th Symp. (Int) on Detonation, Coronado (1976), p. 704.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. V. Anan’eva
    • 1
    Email author
  • A. A. Zvekov
    • 2
  • A. V. Kalenskii
    • 1
  • B. P. Aduev
    • 2
  1. 1.Kemerovo State UniversityKemerovoRussia
  2. 2.Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of SciencesKemerovoRussia

Personalised recommendations