Advertisement

Russian Physics Journal

, Volume 62, Issue 1, pp 114–118 | Cite as

Electrical Properties of Sn-Excess SnTe Single Crystal and Metal-Semiconductor Contacts

  • N. M. AkhundovaEmail author
  • T. D. Aliyeva
Article
  • 12 Downloads

The paper deals with the grown tin telluride (SnTe) single crystals сontaining extrinsic stacking faults (SFs) and their alloyed ohmic contacts of the 57Bi–43Sn eutectic alloy in the temperature range of 77–300 K. It is found that at a low concentration, SFs decrease the hole concentration and increase the electrical resistivity of specimens when they occupy vacancies in the Sn sublattice. At a high concentration, SFs create new current carriers, thereby decreasing the specific resistance of specimens. The ohmic contact resistance is rather low, and the current flows mainly through metallic shunts.

Keywords

solid solution electrical resistivity contact resistance metallic shunt vacancies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Okhotin, A. A. Efimov, V. S. Okhotin, and A. S. Pushkarskii, Thermoelectric Converters [in Russian]. Atomizdat, Moscow (1976), 320 p.Google Scholar
  2. 2.
    N. Kh. Abrikosov and L. E. Shelimova, А IY B YI-Based Semiconductor Materials [in Russian]. Nauka, Moscow (1975), 196 p.Google Scholar
  3. 3.
    G. Z. Bagieva, G. D. Abdinova, N. B. Mustafaev, and D. Sh. Abdinov, Inorg. Mater., 53, No. 4, 5358–360 (2017).CrossRefGoogle Scholar
  4. 4.
    V. I. Stafeev, Semicond., 43, No. 5, 608–611 (2008).CrossRefGoogle Scholar
  5. 5.
    E. H. Rhoderick, Metal-Semiconductor Contact [Russian translation]. Radio i svyaz’, Moscow (1982), 208 p.Google Scholar
  6. 6.
    B. Sh. Barkhalov, N. M. Akhundova, I. R. Nuriev, and D. Sh. Abdinov, Inorg. Mater., 26, No. 7, 1217–1221 (1990).Google Scholar
  7. 7.
    N. M. Akhundova, Russ. Phys. J., 60, No. 9, 1586–1589 (2018).CrossRefGoogle Scholar
  8. 8.
    T. D. Aliyeva, G. D. Abdinova, and N. M. Akhundova, Xəbərlər, 31, No. 2, 126–130 (2011).Google Scholar
  9. 9.
    L. E. Shelimova and N. Kh. Abrikosov, Zhurn. Neorgan. Khimii, 1, No. 3, 1879–1885 (1964).Google Scholar
  10. 10.
    M. R. Lorenz and D. M. J. Jepsen, Phys. Chem. Solids, 26, No. 7, 1177–1180 (1965).CrossRefGoogle Scholar
  11. 11.
    R. F. Brebrik and A. J. Strauss, Phys. Rew., 131, No. 1, 104–110 (1963).CrossRefGoogle Scholar
  12. 12.
    V. I. Kaidanov, I. A. Chernik, and B. A. Efimova, FTP, 1, No. 6, 869–879 (1967).Google Scholar
  13. 13.
    T. V. Blank and Yu. A. Gol’dberg, Semicond., 41, No. 12, 1263–1292 (2007).CrossRefGoogle Scholar
  14. 14.
    T. D. Aliyeva, G. Dzh. Abdinova, N. M. Akhundova, and D. Sh. Abdinov, Russ. J. Phys. Chem. A, 82, No.11, 1967–1968 (2008).CrossRefGoogle Scholar
  15. 15.
    T. D. Aliyeva and D. Sh. Abdinov, Inorg. Mater., 33, No. 1, 22–31 (1997).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Azerbaijan State University of EconomicsBakuAzerbaijan
  2. 2.Institute of Physics Azerbaijan National Academy of SciencesBakuAzerbaijan

Personalised recommendations