Two-Magnon Relaxation Processes in Nanocrystalline Thin Magnetic Films

Numerical analysis of the micromagnetic model was used to reveal the ‘resonance’ feature of relaxation processes in nanocrystalline thin magnetic films. This feature manifests itself in the form of sharp broadening of the ferromagnetic resonance (FMR) line at a certain frequency f1 depending on magnetic characteristics of the film, and is observed only in films the thickness of which exceeds some threshold value dmin. Sharp broadening of the FMR line is accompanied by significant shift of the resonance field, whereas the shift value changes the sign at frequency ~ f1. It was shown analytically that the nature of observed effects is associated with the two-magnon process of spin waves scattering on quasi-periodic magnetic microstructure – magnetization ‘ripple’. Obtained expressions for the threshold value of film thickness dmin and frequency of maximum broadening of FMR line f1 agree well with the results of numerical computation of micromagnetic model.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S.-W. Lee and K.-J. Lee, Proc. IEEE, 104, 1831–1843 (2016).

    Article  Google Scholar 

  2. 2.

    A. N. Babitskii, B. A. Belyaev, N. M. Boev, et al., Instruments and Experimental Techniques, 59, 3, 425–432 (2016).

    Article  Google Scholar 

  3. 3.

    A. N. Babitskii, B. A. Belyaev, N. M. Boev, and A. V. Izotov, IEEE Sensors 2017, Conference Proceedings, 316–318 (2017).

  4. 4.

    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al., Science, 294, 1488–1495 (2001).

  5. 5.

    A. Barman and J. Sinha, Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures, Switzerland, Springer International Publishing AG (2018).

  6. 6.

    A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnetics [in Russian], Nauka, Moscow (1973).

  7. 7.

    R. D. McMichael and P. Krivosik, IEEE Trans. Magn., 40, 2–11 (2004).

    ADS  Article  Google Scholar 

  8. 8.

    S. S. Kalarickal, P. Krivosik, J. Das, et al., Phys. Rev. B., 77, 054427 (2008).

    ADS  Article  Google Scholar 

  9. 9.

    R. Arias and D. L. Mills, Phys. Rev. B., 60, 7395–7409 (1999).

    ADS  Article  Google Scholar 

  10. 10.

    M. Korner, K. Lenz, R. A. Gallardo, et al., Phys. Rev. B., 88, 054405 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    G. Woltersdorf and B. Heinrich, Phys. Rev. B., 69, 184417 (2004).

    ADS  Article  Google Scholar 

  12. 12.

    I. Barsukov, F. M. Romer, R. Meckenstock, et al., Phys. Rev. B., 84, 140410(R) (2011).

    ADS  Article  Google Scholar 

  13. 13.

    L. Lu, J. Young, M. Wu, et al., Appl. Phys. Lett., 100, 022403 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    B. A. Belyaev, A. V. Izotov, A. A. Leksikov, et al., Solid State Phenom., 215, 233–236 (2014).

    Article  Google Scholar 

  15. 15.

    H. Hoffmann, IEEE Trans. Magn., 4, Issue 1, 32–38 (1968).

    ADS  Article  Google Scholar 

  16. 16.

    K. J. Harte, J. Appl. Phys., 39, Issue 3, 1503–1524 (1968).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    V. A. Ignatchenko, G. V. Degtyarev, JETP [in Russian], 60 Iss. 2, 724–732 (1971).

    Google Scholar 

  18. 18.

    B. A. Belyaev, N. M. Boev, A. V. Izotov, P. N. Solovev, Russ. Phys. J., 61, No. 10, 1798–1805 (2019).

    Article  Google Scholar 

  19. 19.

    B. A. Belyaev, A. V. Izotov, Physics of the Solid State, 55, Iss. 12, 2491–2500 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Res., 98, 9551–9555 (1993).

    ADS  Article  Google Scholar 

  21. 21.

    K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, J. Phys. D: Appl. Phys., 41, 175005 (2008).

    Article  Google Scholar 

  22. 22.

    G. Herzer, JMMM, 157/158, 133–136 (1996).

  23. 23.

    B. A. Belyaev, A. V. Izotov, An. A. Leksikov, Physics of the Solid State, 52, Issue 8, 1664–1672 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    M. Sparks, Phys. Rev. B., 1, 3856–3869 (1970).

    ADS  Article  Google Scholar 

  25. 25.

    M. J. Hurben and C. E. Patton, J. Appl. Phys., 83, 4344–4365 (1998).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Izotov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 153–159, December, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Izotov, A.V., Belyaev, B.A., Solovev, P.N. et al. Two-Magnon Relaxation Processes in Nanocrystalline Thin Magnetic Films. Russ Phys J 61, 2313–2320 (2019). https://doi.org/10.1007/s11182-019-01673-4

Download citation

Keywords

  • micromagnetic simulation
  • nanocrystallites
  • random magnetic anisotropy
  • ferromagnetic resonance
  • microwave frequencies
  • two-magnon relaxation process