Advertisement

Dynamics of the Kinetic Energy in the Atmospheric Boundary Layer from the Results of Minisodar Measurements

  • L. G. ShamanaevaEmail author
  • A. I. Potekaev
  • N. P. Krasnenko
  • O. F. Kapegesheva
OPTICS AND SPECTROSCOPY
  • 2 Downloads

Based on acoustic remote measurements of vertical profiles of three wind velocity components in a 200-meter boundary layer of the atmosphere, values of the kinetic energy of the atmosphere and its components: kinetic energy of ordered motion EMKE (with average wind velocity) and turbulent kinetic energy ETKE are estimated. An analysis of their vertical profiles has demonstrated that at altitudes up to ~25–50 m, the turbulent kinetic energy values and their spreads are very small and sharply increase with altitude. The maximum ETKE values are observed at midnight, as well as the maximum EMKE values. In the morning, the contribution of the kinetic energy of the ordered motion in the lower 100-meter layer of the atmosphere exceeds that of the turbulent motion, which can be caused by the presence of a wind shear in the corresponding wind velocity profiles. The vertical EMKE profile increases in the morning, reaches maximum values by noon, and then decreases by midnight. The diurnal variations of the kinetic energy are characterized by the presence of several minima and maxima whose values and times of occurrence depend on the meteorological conditions during sounding session, the presence and characteristics of cloudiness, and the solar radiation intensity.

Keywords

atmospheric boundary layer acoustic sounding minisodar kinetic energy turbulence diurnal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Schlichting, Boundary Layer Theory, L. G. Loitsyanskii, ed. [Russian translation], Nauka, Moscow (1974).Google Scholar
  2. 2.
    T. Foken, Micrometeorology, Springer Verlag, Berlin; Heidelberg (2008).Google Scholar
  3. 3.
    M. A. Haggagy, Sodar-Based Investigation of the Atmospheric Boundary Layer, Berichte des Meteorologischen Institutes des Universität Freiburg, Freiburg, No. 8 (2003).Google Scholar
  4. 4.
    V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars in a Turbulent Atmosphere [in Russian], Publishing House of the Institute of Atmospheric Optics SB RAS, Tomsk (2013).Google Scholar
  5. 5.
    V. V. Sterlyadkin, A. G. Gorelik, and G. G. Shchukin, in: Problems of Remote Sensing, Propagation, and Diffraction of Radio Waves, Lecture Notes, Ser. “III All-Russian Armand Readings: Youth School,” Publishing House of the Murom Institute Branch of Vladimir State University, Murom (2013), pp. 24–42.Google Scholar
  6. 6.
    S. Bradley, Atmospheric Acoustic Remote Sensing, CRC Press, Boca Raton; London; New Yourk (2008).Google Scholar
  7. 7.
    R. L. Coulter and M. A. Kallistratova, Meteor. Atmos. Phys., 85, Nos. 1–3, 3–19 (2004).Google Scholar
  8. 8.
    N. P. Krasnenko, M. V. Tarasenkov, and L. G. Shamanaeva, Russ. Phys. J., 57, No. 11, 1539–1546 (2014).CrossRefGoogle Scholar
  9. 9.
    L. G. Shamanaeva, N. P. Krasnenko, and O. F. Kapegesheva, Russ. Phys. J., 60, No. 12, 2225–2229 (2017).CrossRefGoogle Scholar
  10. 10.
    N. P. Krasnenko, O. F. Kapegesheva, M. V. Tarasenkov, and L. G. Shamanaeva, Russ. Phys. J., 58, No. 8, 1105–1110 (2015).CrossRefGoogle Scholar
  11. 11.
    N. P. Krasnenko, L. G. Shamanaeva, and O. F. Kapegesheva, in: Materials XXIV Int. Symp. “Atmospheric Optics. Atmospheric Physics,” Tomsk (2018), pp. С487–С490.Google Scholar
  12. 12.
    K. H. Undervood and L. G. Shamanaeva, Russ. Phys. J., 54, No. 11, 1286–1294 (2012).CrossRefGoogle Scholar
  13. 13.
    G. K. Greenhut and G. Mastrantonio, J. Appl. Meteor., 28, 99–106 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. G. Shamanaeva
    • 1
    • 2
    Email author
  • A. I. Potekaev
    • 2
    • 3
  • N. P. Krasnenko
    • 4
    • 5
  • O. F. Kapegesheva
    • 2
  1. 1.V. E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia
  4. 4.Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  5. 5.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations