Skip to main content

Advertisement

Log in

Structure and Phase Composition of Heat-Resistant Ni–Al–Co Alloy After Annealing and Creep

  • Published:
Russian Physics Journal Aims and scope

The paper presents research into the structure and phase composition of Ni–Al–Co alloy modified by rhenium (~3 аt.%) alloying. Observations are carried out using the transmission electron microscopy. The initial state of the alloy is the state after the directional crystallization. The alloy is further subjected to 900°С annealing during 1143 h. Creep tests are additionally carried out for this alloy at the same temperature and time and 400 MPa load. It is shown that FCC disordered γ- and ordered γ′-phases are major in all alloy states. Secondary phases are found to be σ-phase, χ-phase, Laves and AlRe2 phases. Experiments show that the high temperature annealing changes the phase composition of the alloy. Thus, the amount of the ordered γ′-phase increases, while that of disordered γ-phase decreases. During the creep process, the amount of the former reduces and the amount of the latter increases. The annealing process modifies the phase composition in secondary phases. It is found that the structural modification caused by the creep process differs from that caused by the annealing process. Thus, the creep-induced modification of the cuboid structure in γ′-phase is stronger than due to annealing. Dislocations are observed in γ- and γ′-phases in all states of the alloy. During the annealing process, the dislocation density in γ-phase is higher than in γ′-phase, and vice versa during the creep process. The experiments show that the behavior of the dislocation structures is different during the annealing and creep processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Maslenkov, Refractory and High Temperature Resistant Materials. Physicochemical Principles of Creation [in Russian], Nauka, Moscow (1984), p. 15.

    Google Scholar 

  2. E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, Vestnik MGTU im. N. E. Baumana. Ser. Mashinostroenie, 38–52 (2011).

  3. B. A. Grinberg and M. A. Ivanov, Ni3Al and TiAl Intermetallic Compounds: Microstructure, Deformation Behavior, Ural Branch of the Russian Academy of Sciences, Ekaterinburg (2002).

  4. Ch. T. Sims, N. S. Stoloff, and W. C. Hagel, Superalloys II [Russian translation], Metallurgiya, Мoscow (1995).

  5. K. B. Povarova, A. A. Drozdov, N. K. Kazanskaya, and A. E. Morozov, Metals, No. 5. 58–71 (2006).

  6. Yu. R. Kolobov, E. N. Kablov, E. V. Kozlov, et al., Structure and Properties of Intermetallic Compounds with Nanophased Hardening [in Russian], MISiS, Moscow (2008).

  7. E. V. Kozlov, A. N. Smirnov, E. L. Nikonenko, et al., Phase Morphology and Transformations at Thermal Treatment of Ni–Al–Cr and Ni–Al–Co Superalloys. Scale-Level and Concentration Effects. Innovational Engineering [in Russian], Moscow (2016).

  8. E. V. Kozlov, N. A. Koneva, N. A. Popova, and E. L. Nikonenko, Bulletin of the Russian Academy of Sciences: Physics, 72, No. 8, 1029–1032 (2008).

    Article  ADS  Google Scholar 

  9. R. C. Reed, The Superalloys – Fundamentals and Applications, University Press, Cambridge (2006).

    Book  Google Scholar 

  10. E. L. Nikonenko, N. A. Popova, T. V. Dement, and N. A. Koneva, Russ. Phys. J., 60, No. 2, 231–235 (2017).

    Article  Google Scholar 

  11. A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Influence of Point and Planar Defects on Structure and Phase Composition of Pre-Transition Low-Stable Region of Metal Systems [in Russian], NTL, Tomsk (2014), 488 p.

  12. N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structure and Phase Transformations in Low-Stability States of Metal Systems at Thermal Treatment [in Russian], NTL, Tomsk (2015).

  13. P. A. Chaplygin, A. I. Potekaev, A. A. Chaplygina, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).

    Article  Google Scholar 

  14. V. V. Kulagina, A. I. Potekaev, A. A. Klopotov, and M. D. Starostenkov, Russ. Phys. J., 55, No. 4, 353–361 (2012).

    Article  Google Scholar 

  15. A. I. Potekaev, A. A. Klopotov, A. N. Matyunin, E. S. Marchenko, V. E. Gyunter, and Sh. A. Dzhalolov, J. Adv. Mater., 2, No. 4, 387–394, (2011)

    Google Scholar 

  16. I. A. Kurzina, A. I. Potekaev, N. A. Popova, et al., Russ. Phys. J., 61, No. 4, 715–721 (2018).

    Article  Google Scholar 

  17. A. I. Potekaev, A. A. Klopotov, V. V. Kulagina, M. D. Starostenkov, et al., Steel Transl., 46, No. 6, 365–369 (2013).

    Article  Google Scholar 

  18. A. A. Klopotov, A. I. Potekaev, E. V. Kozlov, and V. V. Kulagina, Russ. Phys. J., 54, No. 9, 1012–1023 (2012).

    Article  Google Scholar 

  19. V. E. Guenther, A. I. Potekaev, A. A. Klopotov, and Yu. E. Grischenko, Russ. Phys. J., 54, No. 5, 569–575 (2011).

    Article  Google Scholar 

  20. A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, and V. V. Kulagina, Low-Stable Pre-Transition Structures in Nickel and Titanium [in Russian], NTL, Tomsk (2004).

  21. A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 10, 1776–1786 (2017).

    Article  Google Scholar 

  22. F. R. N. Nabarro and H. L. Villiers, The Physics of Creep – Creep and Creep-resistant Alloys, CRC Press, London (1995).

    Google Scholar 

  23. H. Mughrabi, Mater. Sci. Technol., 25, No. 2, 191–204 (2009).

    Article  Google Scholar 

  24. T. Murakumo, T. Kobayashi, Y. Koizumi, and H. Harada, Acta Mater., 52, No. 12, 3737–3744 (2004).

    Article  Google Scholar 

  25. Y. Ro, Y. Koizumi, and H. Harada, Mater. Sci. Eng. A, 223, No. 1–2, 59–63 (1997).

    Article  Google Scholar 

  26. C. M. F. Rae and R. C. Reed, Acta Mater., 49, No. 19, 4113–4125 (2001).

    Article  Google Scholar 

  27. T. Sugui, W. Minggang, L. Tang, et al., Mater. Sci. Eng. A, 527, 5444–5451 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Koneva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 65–71, December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koneva, N.A., Potekaev, A.I., Nikonenko, E.L. et al. Structure and Phase Composition of Heat-Resistant Ni–Al–Co Alloy After Annealing and Creep. Russ Phys J 61, 2218–2224 (2019). https://doi.org/10.1007/s11182-019-01658-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01658-3

Keywords

Navigation