Skip to main content
Log in

Regarding Nonstationary Quadratic Quantum Systems

  • QUANTUM ELECTRONICS
  • Published:
Russian Physics Journal Aims and scope

With the help of the evolution operator method, we have established unitary connection between quadratic systems, namely between a free particle with variable mass M(t) , a particle with variable mass M(t) in a variable homogeneous field, and a harmonic oscillator with variable mass M(t) and frequency ω(t) , on which a variable force F(t) acts. Knowledge of the unitary connection allowed us to express easily in general form the propagators, invariants, wave functions, and other functions of a linear potential and a harmonic oscillator in terms of the corresponding quantities for a free particle. We have analyzed the linear and quadratic invariants in detail. Results known in the literature follow as particular cases from the general results obtained here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Bagrov, D. M. Gitman, and A. S. Pereira, Usp. Fiz. Nauk, 184, No. 9, 961–966 (2014).

    Article  Google Scholar 

  2. Sh. M. Nagiyev, Teor. Mat. Fiz., 194, No. 2, 364–380 (2018).

    Article  Google Scholar 

  3. M. V. Berry and N. L. Balazs, Am. J. Phys., 47, No. 3, 264–267 (1979).

    Article  ADS  Google Scholar 

  4. V. V. Dodonov, V. I. Manko, and O. V. Shakhmistova, Phys. Lett. A, 102, No. 7, 295–297 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  5. I. Guedes, Phys. Rev. A, 63, No. 3, 034102 (2001).

    Article  ADS  Google Scholar 

  6. M. Feng, Phys. Rev. A, 64, No. 3, 034101 (2002).

    Article  ADS  Google Scholar 

  7. P.-G. Luan and C.-S. Tang, Phys. Rev. A, 71, No. 1, 014101 (2005); arXiv:quant-ph/0309174.

  8. K. Husimi, Progr. Theor. Phys., 9, 381–402 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965).

    MATH  Google Scholar 

  10. V. S. Popov and A. M. Perelomov, Zh. Eksp. Teor. Fiz., 56, No. 4, 1375–1390 (1969).

    Google Scholar 

  11. А. R. Lewis and W. B. Riesenfeld, J. Math. Phys., 12, 2040–2043 (1971).

    Article  Google Scholar 

  12. V. V. Dodonov and V. I. Man’ko, in: Proc. P. N. Lebedev Physical Institute of the Academy of Sciences, Vol. 183 (1987), p.182.

  13. I. A. Pedrosa, Phys. Rev. A, 55, No. 4, 3219–3221 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Cordero-Soto, E. Suazo, and S. K. Suslov, Ann. Phys., 325, 1884–1912 (2010).

    Article  ADS  Google Scholar 

  15. K. H. Yeon, H. Ju. Kim, C. I. Um, et al., Phys. Rev. A, 50, No. 2, 1035–1039 (1994).

    Article  ADS  Google Scholar 

  16. D.-Y. Song, J. Phys. A, 32, 3449–3456 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  17. P. Camiz, A. Gerardi, C. Marchioro, et al., J. Math., 12, 2040–2043 (1971).

    ADS  Google Scholar 

  18. Sh. M. Nagiyev and K. Sh. Jafarova, Phys. Lett. A, 377, No. 10–11, 747–752 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  19. Sh. M. Nagiyev, Teor. Mat. Fiz., 188, No. 1, 76–84 (2016).

    Article  Google Scholar 

  20. V. G. Bagrov, D. M. Gitman, I. M. Ternov, et al., Exact Solutions of Relativistic Wave Equations [in Russian], Nauka, Novosibirsk (1982).

  21. V. G. Bagrov, Russ. Phys. J., 61, No. 3, 403–411 (2018).

    Article  Google Scholar 

  22. V. G. Bagrov, A. V. Shapovalov, and I. V. Shirokov, Teor. Mat. Fiz., 87, No. 3, 426–433 (1991).

    Article  Google Scholar 

  23. V. G. Bagrov, A. V. Shapovalov, and I. V. Shirokov, Izv. Vyssh. Uchebn. Zaved. Fiz., 32, No. 11, 112–114 (1989).

    Google Scholar 

  24. I. A. Malkin and V. I. Man’ko. Dynamical Symmetries and Coherent States of Quantum Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  25. G. Schrade, V. I. Manko, W. P. Schleich, and R. J. Glauber, Quantum Semiclass. Opt., 7, 307–325 (1995).

    Article  ADS  Google Scholar 

  26. O. Castanos, S. Hacyan, R. Lopez-Pena, and V. I. Manko, J. Phys. A, 31, 1227 (1998).

    Article  ADS  Google Scholar 

  27. A. M. Perelomov and V. S. Popov, Teor. Mat. Fiz., 3, No. 3, 377–391 (1970).

    Article  Google Scholar 

  28. F. J. Dyson, Phys. Rev., 75, No. 1, 1736–1755 (1949).

    Article  ADS  Google Scholar 

  29. A. R. P. Rau and K. Unnikrishan, Phys. Lett. A, 222, 304–308 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. M. Nagiyev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 27–38, December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagiyev, S.M., Ahmadov, A.I., Tarverdiyeva, V.A. et al. Regarding Nonstationary Quadratic Quantum Systems. Russ Phys J 61, 2173–2187 (2019). https://doi.org/10.1007/s11182-019-01654-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01654-7

Keywords

Navigation