Advertisement

Estimation of the Aggregate Stability of Silver Nanoparticles in a Gel Composition

  • G. F. KopytovEmail author
  • V. V. Malyshko
  • A. I. Goryachko
  • M. V. Sharafan
  • V. A. Isaev
  • A. N. Sidorenko
  • P. G. Storozhuk
  • I. I. Pavlyuchenko
  • A. V. Moiseev
  • A. A. Elkina
  • M. G. Baryshev
Article
  • 6 Downloads

The aggregate stability of silver nanoparticles (Ag – NPs) in a gel composition is estimated. It is established that during long-term storage (for 3 years), a decrease in the number of nanoparticles with sizes of 1–5 and 5–10 nm and a significant increase in the number of nanoparticles with sizes of 10–15 nm are observed. At the same time, the fraction of silver nanoparticles with sizes greater than 30 nm is less than 5%.

Keywords

silver nanoparticles aggregate stability gel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Fang, L. Zhang, J. Li J., et al., Nature Commun., 9, No. 1, 521 (2018).Google Scholar
  2. 2.
    H. Bahadar, F. Maqbool, K. Niaz, et al., Iranian Biomed. J., 20, No. 1, 1–11 (2016).Google Scholar
  3. 3.
    I. S. Petriev, V. Yu. Frolov, S. N. Bolotin, et al., Russ. Phys. J., 60, No. 9, 1611–1617 (2018).CrossRefGoogle Scholar
  4. 4.
    J. M. George, A. Antony, and B. Mathew, Microchim. Acta., 185, No. 7, 358 (2018).CrossRefGoogle Scholar
  5. 5.
    A. A. Panáček, L. A. Kvítek, M. A. Smékalová, et al., Nature Nanotechnol., 13, Iss. 1, 65–71 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    M. Mazdeh, M. E. Rahiminejad, A. Nili-Ahmadabadi, et al., Jundishapur J. Natural Pharmaceutical Products, 11, Iss. 1, e27628 (2016).CrossRefGoogle Scholar
  7. 7.
    M. A. Karami, B. S. Makhmal Zadeh, M. Koochak, et al., Jundishapur J. Natural Pharmaceutical Products, 11, Iss. 4, e33968 (2016).CrossRefGoogle Scholar
  8. 8.
    J. Wan, Y. Kim, M. J. Mulvihill, and T. K. Tokunaga, Environ Toxicol Chem., 37, No. 5, 1301–1308 (2018).CrossRefGoogle Scholar
  9. 9.
    S. F. Chen and H. Zhang, Water Sci. Technol., 70, No. 2, 6 (2014).CrossRefGoogle Scholar
  10. 10.
    L. Yuan, C. J. Richardson, M. Ho, et al., Environment. Sci. Technol., 52, Iss. 5, 2558–2565 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    M. S. Park, J. Park, S. K. Jeon, et al., J. Nanosci. Nanotechnol., 13, No. 11, 70 (2013).Google Scholar
  12. 12.
    J. M. Lacave, U. Vicario-Parés, E. Bilbao, et al., Sci. Total Environment, 643, 1209–1220 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    S. S. Dzhimak, M. E. Sokolov, A. A. Basov, et al., Nanotechnologies in Russia, 11, 835–841 (2016).CrossRefGoogle Scholar
  14. 14.
    S. S. Dzhimak, A. A. Basov, N. N. Volchenko, et al., Doklady Biochemistry and Biophysics, 476, 323–325 (2017).CrossRefGoogle Scholar
  15. 15.
    O. V. Mosin and I. Ignatov, Building Materials, Equipment, Technologies of the XXI Century, No. 3(194), 21–23 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. F. Kopytov
    • 1
    Email author
  • V. V. Malyshko
    • 2
  • A. I. Goryachko
    • 1
  • M. V. Sharafan
    • 1
  • V. A. Isaev
    • 1
  • A. N. Sidorenko
    • 2
  • P. G. Storozhuk
    • 2
  • I. I. Pavlyuchenko
    • 2
  • A. V. Moiseev
    • 3
  • A. A. Elkina
    • 1
  • M. G. Baryshev
    • 1
  1. 1.Kuban State UniversityKrasnodarRussia
  2. 2.Kuban State Medical UniversityKrasnodarRussia
  3. 3.Kuban State Agrarian UniversityKrasnodarRussia

Personalised recommendations