Advertisement

Russian Physics Journal

, Volume 61, Issue 11, pp 2012–2018 | Cite as

The Influence of High-Energy Krypton Ion Implantation Temperature on Structure and Properties of Ni–Ti Alloy

  • V. P. PoltavtsevaEmail author
  • S. A. Ghyngazov
  • D. A. Satpaev
Article
  • 6 Downloads

The influence of the temperature of implantation of Ni–Ti shape memory alloy with 84Kr15+ions at the energy E = 147 MeV on its structural-phase state is investigated. At the implantation temperatures 250 and 300°С, within the projective range Rp and out-range area the following processes and phenomena are observed: new formation of the martensitic В19'-phase, formation of nano-sized particles of the R-phase, increase in resistivity due to the formation of radiation-defect structures, strengthening of the alloy in the austenitic structural-phase state, and longer phase-transition temperature intervals.

Keywords

nickel titanium ion implantation phase transition hardening nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Anischik, S. I. Zhukova, N. N. Pomekh, and V. A. Skuratov, Fiz. Khim. Obr.Mater., No. 5, 11–14 (2003).Google Scholar
  2. 2.
    V. Poltavtseva, A. Larionov, D. Satpaev, and M. Gyngazova, IOP Conf. Series: Mater. Sci. Eng., 110, 012011 (2016).CrossRefGoogle Scholar
  3. 3.
    V. Poltavtseva, , and G. Zheltova, IOP Conf. Series: Mater. Sci. Eng., 168, 012032 (2017).CrossRefGoogle Scholar
  4. 4.
    V. P. Poltavtseva, A. S. Larionov, and D. A. Satpaev, in: Proc. 12 Int. Conf. Interaction of Radiation with Solids, 274–276, Publ. Cent. BSU, Minsk (2017).Google Scholar
  5. 5.
    V. S. Kovivchak, E. V. Popov, K. A. Mikhailov, et al., Fiz. Khim. Obr.Mater., No. 1, 28–30 (2004).Google Scholar
  6. 6.
    V. P. Poltavtseva, S. B. Kislitsin, N. N. Koval, and K. V. Oskomov, Izv. VUZov. Fiz., 55, No.12/3, 41–43 (2012).Google Scholar
  7. 7.
    V. P. Poltavtseva, S. B. Kislitsin, and S. A. Ghyngazov, Russ. Phys. J., 59, No. 2, 159–165 (2016).CrossRefGoogle Scholar
  8. 8.
    V. E. Gunther, V. N. Khodorenko, Yu. F. Yasenchuk, et al., Titanium Nickelide. Medical Material of a New Generation [in Russian], MITZ Publ., Tomsk (2006).Google Scholar
  9. 9.
    T. Karuta, Farid: First Atom. Pavel Ind. Group, No. 121, 19–26 (1989).Google Scholar
  10. 10.
    A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, and V. V. Kulagina, Low-Stability Pre-Transitional; Structures in Titanium Nickelide [in Russian], NTL Publ., Tomsk (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. P. Poltavtseva
    • 1
    Email author
  • S. A. Ghyngazov
    • 2
  • D. A. Satpaev
    • 1
  1. 1.Institute of Nuclear Physics (INP) of the Ministry of Energy of the Republic of KazakhstanAlmatyRepublic of Kazakhstan
  2. 2.Institute of Non-Destructive Testing at the National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations