Skip to main content
Log in

Special Features of the Structure of Titanium Nitride Coatings in Substrate Surface Cuts

  • Published:
Russian Physics Journal Aims and scope

Elemental compositions and structure-phase states of titanium nitride coatings on the flat surface and in a cut of substrate from 10Cr18Ni10Ti steel are investigated by the methods of x-ray microspectral analysis, Auger electron spectroscopy, and dark-field electron microscopy analysis of the bending-torsion of the crystal lattice. It is established that the coating in the cut, unlike the coating on the frontal surface, has a modified elemental composition and a two-layer structure whose special features and thicknesses change with distance from the sample surface. It is shown that these changes are caused by phase transformations, decreased number of defects, dispersion of layer structures, and increased concentration of impurities with increasing distance from the substrate surface. Based on the results obtained, possible conditions for coating structure formation in the cut of the substrate surface are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. M. Lakhtin and Ya. D. Kogan, Steel Nitriding [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

  2. G. Meyer, Metalloved. Termich. Obrab. Metallov,No. 7, 5–8 (1973).

  3. V. E. Roshchin, A. V. Asanov, and A. V. Roshchin, Metally, No. 6, 15–22 (2010).

  4. J. K. Hirvonen, ed., Ion Implantation [Russian translation], Metallurgiya, Moscow (1985).

  5. D. Levchuk, Surf. Coat. Technol., 201, 6071–6077 (2007).

    Article  Google Scholar 

  6. S. Veprek and M. J. G. Veprek-Heijman, Surf. Coat. Technol., 202, 5063–5073 (2008).

    Article  Google Scholar 

  7. V. M. Savostikov, A. I. Potekaev, A. N. Tabachenko, et al., Russ. Phys. J., 55, No. 9, 1056–1062 (2013).

    Article  Google Scholar 

  8. W. Tillmann, E. Vogli, and S. Mohapatra, Surf. Coat. Technol., 202, 750–754 (2007).

    Article  Google Scholar 

  9. Z. Zeng, R. K. Y. Fu, X. Tian, and P. K. Chu, Surf. Coat. Technol., 186, 260–264 (2004).

    Article  Google Scholar 

  10. C. Liu, J. Wang, Sh. Feng, et al., Surf. Coat. Technol., 229, 200–204 (2013).

    Article  Google Scholar 

  11. M. Ueda, C. Silva, N. M. Santos, and G. B. Souza, Nucl. Instrum. Methods Phys. Res. B, 409, 202–208 (2017).

    Article  ADS  Google Scholar 

  12. D. P. Borisov, K. N. Detistov, A. D. Korotaev, et al., Zavodsk. Labor. Diagn. Mater., 76, No. 12, 32–36 (2010).

    Google Scholar 

  13. A. D. Korotaev, A. N. Tyumentsev, and V. F. Sukhovarov, Disperse Hardening of Refractory Metals [in Russian], Nauka, Novosibirsk (1989).

  14. Yu. A. Nechaev and V. M. Kamyshov, Izv. Akad. Nauk SSSR. Metally, No. 6, 50–53 (1969).

  15. H. J. Goldschmidt, Interstitial Alloys, Edition I [Russian translation], Mir, Moscow (1971).

  16. L. M. Utevskii, Electron Diffraction Microscopy in Metal Science [in Russian], Metallurgiya, Moscow (1973).

    Google Scholar 

  17. H. J. Goldschmidt, Interstitial Alloys, Edition II [Russian translation], Mir, Moscow (1971).

  18. R. Machunze and G. C. A. M. Janssen, Surf. Coat. Technol., 203, 550–553 (2008).

    Article  Google Scholar 

  19. P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, Thin Solid Films, 415, 151–159 (2002).

    Article  ADS  Google Scholar 

  20. A. N. Tyumentsev, A. D. Korotaev, Yu. P. Pinzhin, et al., Russ. Phys. J., 41, No. 7, 613–619 (1998).

    Article  Google Scholar 

  21. C.-H. Ma, J.-H. Huang, and H. Chen, Surf. Coat. Technol., 133–134, 289–294 (2000).

    Article  Google Scholar 

  22. S. Mahieu, P. Ghekiere, D. Depla, and R. Gryse, Thin Solid Films, 515, 1229–1249 (2006).

    Article  ADS  Google Scholar 

  23. K. K. Kadyrzhanov, F. F. Komarov, A. D. Pogrebnyak, et al., Ion-Beam and Ion-Plasma Modification of Materials, Moscow State University Publishing House, Moscow (2005).

  24. A. F. Burenkov, F. F. Komarov, M. A. Kumakhov, and M. M. Temkin, Tables of Spatial Distributions of Ionimplanted Impurities [in Russian], Publishing House of Belarusian State University, Minsk (1980).

  25. Yu. P. Sharkeev, Effect of long-range action in ion-implanted metal materials: dislocation structures, properties, stresses, and mechanisms: Doctoral Thesis in Physical-Mathematical Sciences, Tomsk (2000).

  26. A. I. Kuz’michev, Magnetron Sputtering Systems. Introduction to Physics and Technology of Magnetron Sputtering [in Russian], LLC Avers, Kiev (2008).

  27. Yu. Kh. Akhmadeev, I. M. Goncharenko, Yu. F. Ivanov, et al., Pis’ma Zh. Tekh. Fiz., 31, No. 13, 24–30 (2005).

    Google Scholar 

  28. L. Karlsson, L. Hultman, M. P. Johansson, et al., Surf. Coat. Technol., 126, 1–14 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kuznetsov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 51–61, November, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.M., Ovchinnikov, S.V. & Slabodchikov, V.A. Special Features of the Structure of Titanium Nitride Coatings in Substrate Surface Cuts. Russ Phys J 61, 2001–2011 (2019). https://doi.org/10.1007/s11182-019-01630-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01630-1

Keywords

Navigation