Skip to main content
Log in

A Theoretical Investigation of Special Aspects of Nonequilibrium Disclinational-Type Boundaries in Crystalline Materials

  • Published:
Russian Physics Journal Aims and scope

The results of a theoretical analysis of the stress fields and elastic energy distributions of the disclinational grain-boundary structure in nanocrystalline metallic materials as a function of grain size are presented. Considering the superposition of these stresses during screening of the piled-up disclinations it is found out that the maximal values of the principal components of the stress tensors are achieved in the planes of disclination occurrence P = Tr(σij)/3 >  > E/25, while the stress gradients are characterized by the maximum values in the nodal points ∂P/∂x ≈ 0.08 E nm–1 (Е – Young’s modulus). It is determined that a considerable part of the shear stress components is localized inside the grain. It is shown that the characteristic features of the specific elastic energy distribution in these configurations are the local energy maxima, which could be a reason for the physical broadening of the nanograin boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Pumphrey and H. Gleiter, Philosoph. Mag., 32, No. 4, 881–885 (1975).

    Article  ADS  Google Scholar 

  2. A. K. Orlov, V. K. Perevezentsev, and V. V. Rybin, Grain Boundaries in Metals [in Russian], Metallurgiya, Moscow (1980).

    Google Scholar 

  3. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  4. A. M. Glezer and B. V. Molotilov, Structure and Mechanical Properties of Amorphous Alloys [in Russian], Metallurgiya, Moscow (1992).

    Google Scholar 

  5. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials: Processing, Structure, and Properties [in Russian], Akademkniga, Moscow (2007).

  6. H. Gleiter, Nanostruct. Mater., 6,No. 1–4, 3–14 (1995).

    Article  Google Scholar 

  7. Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, et al., Mater. Sci. Forum Vols., А 204–206, 437–442 (1996).

  8. R. Z. Valiev, R. R. Mulyukov, V. V. Ovchinnikov, et al., Metallofizika, 12, No. 5, 124–126 (1990).

  9. A. A. Nazarov and D. V. Bachurin, Phys. Metals Metallogr, 96, No. 2, 128–134 (2003).

    Google Scholar 

  10. A. A. Nazarov and D. V. Bachurin, Phys. Metals Metallogr, 96, No. 5, 446–451 (2003).

    Google Scholar 

  11. K. N. Mikaelyan, I. A. Ovid’ko, and I. A. Romanov, Phys. Metals Metallogr, 90, No. 3, 224–230 (2000).

    Google Scholar 

  12. A. N. Tyumentsev, I. A. Ditenberg, A. D. Korotaev, and K. I. Denisov, Phys. Mesomech., 16, No. 4, 319–334 (2013).

    Article  Google Scholar 

  13. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals [in Russian], Nauka, Leningrad (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Sukhanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 114–118, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhanov, I.I., Ditenberg, I.A. & Tyumentsev, A.N. A Theoretical Investigation of Special Aspects of Nonequilibrium Disclinational-Type Boundaries in Crystalline Materials. Russ Phys J 61, 1876–1881 (2019). https://doi.org/10.1007/s11182-019-01612-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01612-3

Keywords

Navigation