Skip to main content
Log in

Study of Peculiarities of the Microwave Absorption Spectrum of Nanocrystalline Thin Magnetic Films

  • Published:
Russian Physics Journal Aims and scope

Based on the micromagnetic model which takes into account the random distribution of the uniaxial magnetic anisotropy directions in crystallites of a nanocrystalline film, an effective method has been implemented for calculation of the magnetization dynamics in microwave fields. For a certain range of crystallite sizes, when the energy of the random magnetic anisotropy is comparable to the exchange energy, a significant change of the ferromagnetic resonance field, broadening of the resonance line, and the appearance of an asymmetry in the shape of the resonance curve were found. With an increase of the crystallite sizes, the resonance field first grows, then, it quickly decreases to its minimum, and then, it grows again to reach saturation. In this case, the steepness of the left slope of the broadening resonance curve first decreases faster than that of the right slope, leading to the symmetry breaking of the resonance curve shape, then, the curve becomes symmetrical again, and then, the steepness of the left slope becomes greater than that of the right slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Petzold, JMMM, 242–245, 84–89 (2002).

    Article  Google Scholar 

  2. M. Yamaguchi, K. H. Kim, and S. Ikedaa, JMMM, 304, 208–213 (2006).

    Article  ADS  Google Scholar 

  3. A. N. Babitskii, B. A. Belyaev, N. M. Boev, et al., Instruments and Experimental Techniques, 59, No. 3, 425–432 (2016).

    Google Scholar 

  4. B. A. Belyaev, N. M. Boev, A. V. Izotov, et al., Russ. Phys. J., 61, No. 8, 1367–1375 (2018).

    Article  Google Scholar 

  5. A. N. Lagar’kov, S. A. Maklakov, et al., J. Commun. Technol. Electron., 54, No. 5, 596–603 (2009).

    Article  Google Scholar 

  6. O. Acher and A. L. Adenot, Phys. Rev. B, 62, 11324–11327 (2000).

    Article  ADS  Google Scholar 

  7. G. Herzer, JMMM, 157/158, 133–136 (1996).

    Article  ADS  Google Scholar 

  8. B. A. Belyaev, A. V. Izotov, and An. A. Leksikov, Phys. Solid State, 52, No. 8, 1664–1672 (2010).

    Article  ADS  Google Scholar 

  9. A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Res., 98, 9551–9555 (1993).

    Article  ADS  Google Scholar 

  10. B. Van de Wiele, F. Olyslager, L. Dupre´, and D. De Zutter, JMMM, 322, 469–476 (2010).

    Article  ADS  Google Scholar 

  11. A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  12. B. A. Belyaev and A. V. Izotov, Phys. Solid State, 55, No. 12, 2491–2500 (2013).

    Article  ADS  Google Scholar 

  13. A. V. Izotov and B. A. Belyaev, Russ. Phys. J., 53, No. 9, 900–905 (2011).

    Article  Google Scholar 

  14. M. Grimsditch, L. Giovannini, F. Monotcello, et al., Phys. Rev. B, 70, 054409 (2004).

    Article  ADS  Google Scholar 

  15. K. Rivkin and J. B. Ketterson, JMMM, 306, 204–210 (2006).

    Article  ADS  Google Scholar 

  16. M. D’aquino, C. Serpico, G. Miano, and C. Forestiere, J. Comput. Phys., 228, 6130–6149 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. N. Vukadinovic, O. Vacus, M. Labrune, et al., Phys. Rev. Lett., 85, 2817–2820 (2000).

    Article  ADS  Google Scholar 

  18. S. Labbe and P.-Y. Bertin, JMMM, 206, 93–105 (1999).

    Article  ADS  Google Scholar 

  19. C. Vaast-Paci and L. Leylekian, JMMM, 237, 342–361 (2001).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media, 2-nd ed. [in Russian], Nauka, Moscow (1982).

  21. K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, J. Phys. D: Appl. Phys., 41, 175005 (2008).

    Article  Google Scholar 

  22. A. L. Stancik and E. B. Brauns, Vibrational Spectrosc., 47, 66–69 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Belyaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 50–56, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, B.A., Boev, N.M., Izotov, A.V. et al. Study of Peculiarities of the Microwave Absorption Spectrum of Nanocrystalline Thin Magnetic Films. Russ Phys J 61, 1798–1805 (2019). https://doi.org/10.1007/s11182-019-01603-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01603-4

Keywords

Navigation