Skip to main content
Log in

Synthesis, Structure and Electromagnetic Properties of Nanocomposites with Three-component FeCoNi Nanoparticles

  • PHYSICS OF MAGNETIC PHENOMENA
  • Published:
Russian Physics Journal Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Infrared heating was used to synthesize FeCoNi/С nanocomposites, where nanoparticles of FeCoNi ternary alloy are stabilized and uniformly distributed in the carbon matrix volume. The authors studied the impact of synthesis temperature and percentage ratio of metals upon the structure, composition and electromagnetic properties. X-ray phase analysis and Mössbauer spectroscopy showed that ternary alloy nanoparticles with different compositions and crystalline lattice types can be formed with the rise in synthesis temperature and iron concentration. Resonator method was used to examine frequency dependencies of relative complex dielectric and magnetic permeabilities of nanocomposites in the range of 3–12 GHz. Calculation of reflection coefficient based on experimental permeability data showed that by varying synthesis temperature and percentage ratio of metals one can control the frequency range of effective absorption of electromagnetic waves. It was established that increase in relative iron content from 33 to 50 rel.% leads to the shift of minimal electromagnetic wave reflection coefficient band from f ~ 12+ GHz to frequency f ~ 6 GHz at identical absorber thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Gubin, Y. I. Spichkin, G.Yu. Yurkov, and A. M. Tishin, Russ. J. Inorg. Chem., 47, S32 (2002).

    Google Scholar 

  2. A. Hui Lu, E. L. Salabas, and F. Schüth, Angew. Chem. Int. Ed., 46, 1222 (2007).

    Article  Google Scholar 

  3. Y. H. Xu, J. Bai, and J. P. Wang, JMMM, 311, 131 (2007).

    Article  ADS  Google Scholar 

  4. S. N. Khadzhiev, M. V. Kulikova, M. I. Ivantsov, et al., Pet. Chem., 56, 522 (2016).

    Article  Google Scholar 

  5. M. H. Xu, W. Zhong, X. S. Qi, et al., J. Alloys Compounds, 495, 200 (2010).

    Article  Google Scholar 

  6. M. Bahgat, Min-Kyu Paek, and Jong-Jin Pak, J. Alloys Compounds, 466, 59 (2008).

    Article  Google Scholar 

  7. A. Azizi, H. Yoozbashizadeh, and S. K. Sadrnezhaad, JMMM, 321, 2729 (2009).

    Article  ADS  Google Scholar 

  8. X. Li and S. Takahashi, JMMM, 214, 195 (2000).

    Article  ADS  Google Scholar 

  9. S. B. Dalavia, J. Theerthagiria, M. M. Rajab, and R. N. Panda, JMMM, 344, 30 (2013).

    Article  ADS  Google Scholar 

  10. N. Kr. Prasad and V. Kumar, J. Mater. Sci: Mater. Electron., 26, 10109 (2015).

    Google Scholar 

  11. K. Zehani, R. Bez, A. Boutahar, et al., J. Alloys Compounds, 591, 58 (2014).

    Article  Google Scholar 

  12. Yong Yang, Caing Xu, Xogxin Xia, et al., J. Alloys Compounds, 493, 549 (2010).

  13. X. G. Liu, Z. Q. Ou, D. Y. Geng, et al., Carbon, 48, 891 (2010).

    Article  Google Scholar 

  14. N. Poudyal, G. S. Chaubey, C.-B. Rong, et al., Nanotechnology, 24, 345605 (2013).

    Article  Google Scholar 

  15. L. M. Zemtsov, G. P. Karpacheva, Polymer Science, Series A [in Russian], 36, Issue 6, 919 (1994).

  16. V. V. Kozlov, G. P. Karpacheva, V. S. Petrov, E. V. Lazovskaya Polymer Science, Series A [in Russian], 43, Issue 1, 20 (2001).

  17. J. D. Moskowitz and J. S. Wiggins, Polymer Degradation and Stability, 125, 76 (2016).

    Article  Google Scholar 

  18. P. Melnikov, V. A. Nascimento, I. V. Arkhangelsky, et al., J. Therm. Anal. Calorim., 115, 145 (2014).

    Article  Google Scholar 

  19. V. G. Petrov, V. A. Aleksandrov, M. A. Shumilova, Chem. Phys. & Mesoscopy [in Russian], 16, Issue 1, 152 (2014).

    Google Scholar 

  20. I. I. Kalinichenko, A. I. Purtov, Russ. J. Inorg. Chem. [in Russian], 11, Issue 7, 1669 (1966).

  21. D. Yu. Karpenkov, D. G. Muratov, L. V. Kozitov, et al., JMMM, 429, 94 (2017).

    Article  ADS  Google Scholar 

  22. L. V. Kozhitov, M. F. Bulatov, V. V. Korovushkin, еt al., J. Nano- Electron. Phys., 7, 04103 (2015).

    Google Scholar 

  23. D. G. Muratov, L. V. Kozhitov, D. Yu. Karpenkov, et al., Russ. Phys. J., 60, Issue 11, 1924–1930 (2018).

  24. Y. A. Abdu et al., JMMM, 280, 395 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Muratov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 40–49, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratov, D.G., Kozhitov, L.V., Korovushkin, V.V. et al. Synthesis, Structure and Electromagnetic Properties of Nanocomposites with Three-component FeCoNi Nanoparticles. Russ Phys J 61, 1788–1797 (2019). https://doi.org/10.1007/s11182-019-01602-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01602-5

Keywords

Navigation