Skip to main content

Advertisement

Log in

Radiant Energy Extinction in the Radiative Transfer Equation for Crystal Clouds

  • Published:
Russian Physics Journal Aims and scope

Systematic information on the application of the extinction formalization of different types for solving the equation of radiative transfer in a crystal cloud is presented. The basic laws of visible and infrared radiation extinction are illustrated that provide the basis for the assessment of the extent with which the special features of the energy and polarization extinction characteristics formed by crystals with different microphysical, optical, and orientational parameters must be taken into account. It is shown that large plates with preferred orientation stand out among crystals of all types in the degree and stability of manifestation of the polarization extinction characteristics and their spectral dependence. For such particles, the polarization extinction effect can be higher by several orders of magnitude and constitute more than 50% of the energy characteristic of the extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Chandrasekhar, Radiant Energy Transfer [Russian translation], Inostrannaya Literatura, Moscow (1953).

    Google Scholar 

  2. I. N. Minin, Theory of Radiative Transfer in Planetary Atmospheres [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  3. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, Cambridge (1999).

    Book  Google Scholar 

  4. A. B. Kargin, B. A. Kargin, and M. V. Lavrov, Russ. Phys. J., 56, No. 3, 241–250 (2013).

    Article  Google Scholar 

  5. B. A. Kargin, A. B. Kargin, and S. M. Prigarin, Proc. SPIE, 10035, 100352S (2016).

    Article  Google Scholar 

  6. S. M. Prigarin, Opt. Atm. Okeana, 29, No. 9, 747–751 (2016).

    Google Scholar 

  7. T. A. Sushkevich, Mathematical Models of Radiative Transfer [in Russian], Binom. Laboratoriya Znanii, Moscow (2006).

    Google Scholar 

  8. A. J. Baran, J. Quant. Spectr. Rad. Trans., 110, 1239–1260 (2009).

    Google Scholar 

  9. M. S. Town, V. P. Walden, and S. G. Warren, J. Climate, 20, 544–559 (2007).

    Article  ADS  Google Scholar 

  10. A. Avramon and J. Y. Harrington, J. Geophys. Res., 115, D03205 (2010).

    ADS  Google Scholar 

  11. T. F. Stocker, D. Qin, G.-K. Plattner, at al., eds., IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (2013).

  12. M. I. Mishchenko, J. W. Hovenier, and L. J. Travis, eds., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, Cambridge (2000).

    Google Scholar 

  13. M. I. Mishchenko, L. J. Travis, and A. A. Laris, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, Cambridge (2002).

    Google Scholar 

  14. M. I. Mishchenko, L. J. Travis, and A. A. Laris, Multiple Scattering of Light by Particles. Radiative Transfer and Coherent Backscattering, Cambridge University Press, Cambridge (2006).

    Google Scholar 

  15. G. V. Rosenberg, Usp. Fiz. Nauk, LVI, No. 1, 78–110 (1955).

    Google Scholar 

  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  17. M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, et al., J. Quant. Spectr. Rad. Trans., 178, 276–283 (2016).

    Article  ADS  Google Scholar 

  18. A. Penttila, E. Zubko, K. Lumme, et al., J. Quant. Spectr. Rad. Trans., 106, 417–436 (2007).

    Article  ADS  Google Scholar 

  19. M. A. Yurkin and A. G. Hoekstra, J. Quant. Spectr. Rad. Trans., 112, 2234–2247 (2011).

    Article  ADS  Google Scholar 

  20. A. A. Popov, Proc. SPIE, 2822, 186194 (1996).

    Google Scholar 

  21. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds, Gidrometeoizdat [in Russian], Leningrad (1984).

  22. A. Auer and D. Veal, Atm. Sci., 27, 919–926 (1970).

    Article  ADS  Google Scholar 

  23. M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, et al., J. Opt. Soc. Am. A, 11, 1376–1377 (1994).

    Article  ADS  Google Scholar 

  24. Y. Takano and K. N. Liou, J. Opt. Soc. Am. A, 10, 1243–1256 (1993).

    ADS  Google Scholar 

  25. Y. Takano and K. N. Liou, J. Opt. Soc. Am. A, 11, 1378 (1994).

    Article  ADS  Google Scholar 

  26. M. I. Mishchenko, M. J. Berg, C. M. Sorensen, et al., J. Quant. Spectr. Rad. Trans., 110, 323–327 (2009).

    Google Scholar 

  27. L. Bi, P. Yang, and G. W. Kattawar, Appl. Opt., 49, 4641–4646 (2010).

    Article  ADS  Google Scholar 

  28. P. Yang, M. Wendish, L. Bi, et al., J. Quant. Spectr. Rad. Trans., 112, 2035–2039 (2011).

    Google Scholar 

  29. M. Gao, P. Yang, and G. W. Kattawar, J. Quant. Spectr. Rad. Trans., 131, 72–81 (2013).

    Google Scholar 

  30. C. Prabhakara, R. S. Fraser, G. Dalu, et al., J. Appl. Meteor., 27, 379–399 (1988).

    Article  ADS  Google Scholar 

  31. C. Prabhakara, J. M. Yoo, G. Dalu, et al., J. Appl. Meteor., 29, 1313–1329 (1990).

    Article  ADS  Google Scholar 

  32. A. A. Popov, Proc. SPIE, 3220, 380–389 (1997).

    Article  ADS  Google Scholar 

  33. O. V. Shefer and A. A. Popov, Appl. Opt., 49, 1434–1445 (2010).

    Article  ADS  Google Scholar 

  34. O. V. Shefer, J. Quant. Spectr. Rad. Trans., 117, 104–113 (2013).

    Article  ADS  Google Scholar 

  35. O. V. Shefer, J. Quant. Spectr. Rad. Trans., 178, 350–360 (2016).

    Article  ADS  Google Scholar 

  36. A. J. Heymsfield, Atm. Tech., 8, 17–24 (1976).

    Google Scholar 

  37. A. A. Popov, Dokl. Akad. Nauk SSSR, 303, 594–597 (1988).

    ADS  Google Scholar 

  38. O. V. Shefer, J. Quant. Spectr. Rad. Trans., 201, 148–155 (2017).

    Article  ADS  Google Scholar 

  39. S. G. Warren and R. E. Brandt, J. Geophys. Res., 113, D14220 (2008).

    Article  ADS  Google Scholar 

  40. R. Mesheryakov, A. Moiseev, A. Yu. Demin, et. al., Key Eng. Mat., 685, 943–947 (2016).

    Article  Google Scholar 

  41. A.Yu. Demin, S. M. Marchuk, and V. I. Reizlin, in: Proc. 9th Korea-Russia International Symposium on Science and Technology (KORUS 2005), Novosibirsk (2005), pp. 592–593; DOI: https://doi.org/10.1109/KORUS.2005.1507790.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Shefer.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 18–28, September, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shefer, O.V., Kargin, B.A. Radiant Energy Extinction in the Radiative Transfer Equation for Crystal Clouds. Russ Phys J 61, 1568–1579 (2019). https://doi.org/10.1007/s11182-018-1573-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1573-5

Keywords

Navigation