Skip to main content
Log in

Aluminum Ion Beam Treatment of Zirconium Ceramics

  • Published:
Russian Physics Journal Aims and scope

The paper presents the radiation and thermal treatment of zirconium ceramics with high-energy Al ion beams generated at an accelerating voltage of 1.5 kV, which modifies the structure and electrophysical properties of zirconium ceramics. Compact powder and ceramic samples are used for the radiation and thermal treatment performed at 1123–1173 K. The surface treatment of compact powders leads to the increase in the grain size, whereas the surface of ceramic samples turns black and electrically conductive in depth. This is because the change in the oxygen stoichiometry of zirconium ceramics. Air annealing of treated ceramics returns the sample to the initial state. The phase composition, microhardness and density of ceramic samples display no changes after the radiation and thermal treatment. Under the experimental conditions, the diffusion of aluminum ions in the surface layer is not observed. It is found that the ion beam treatment leads to the decrease in aluminum-containing impurity in the surface layers of zirconium ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Vlasov, S. Panin, V. P. Sergeev, et al., Adv. Mater. Res., 872, 219–224 (2014).

    Article  Google Scholar 

  2. A. I. Ryabchikov, D. O. Sivin, P. S. Anan'in, et al., Russ. Phys. J., 61, No. 2, 270–277 (2018).

  3. A. S. Demin, E. V. Morozov, S. A. Maslyaev, et al., Fiz. Khim. Obrab. Mater., No. 6, 42–50 (2016).

    Google Scholar 

  4. I. Yu. Romanov, N. V. Gushchina, V. V. Ovchinnikov, et al., Russ. Phys. J., 60, No. 10, 1823–1831 (2018).

    Article  Google Scholar 

  5. S. A. Maslyaev, E. V. Morozov, P. A. Romakhin, et al., Fiz. Khim. Obrab. Mater., No. 3, 5–17 (2015).

    Google Scholar 

  6. I. G. Romanov and I. N. Tsareva, ZhTF, 27, No. 16, 65–70 (2001).

    Google Scholar 

  7. S. A. Gyngazov, I. P. Vasil'ev, A. P. Surzhikov, et al., ZhTF, 85, No. 1, 132–137 (2015).

    Google Scholar 

  8. K. P. Savkin, A. S. Bugaev, A. G. Nikolaev, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 57, No. 10/3, 244–248 (2014).

    Google Scholar 

  9. V. Kostenko, S. Pavlov, and S. Nikolaeva, IOP Conf. Ser.: Mater. Sci. Eng., 289, 012019 (2018).

    Article  Google Scholar 

  10. A. F. Burenkov, F. F. Komarov, M. A. Kumachov, and M. M. Temkin, The Spatial Distribution of the Energy Released in a Cascade of Atomic Collisions in Solids. Energoizdat, Moscow (1985).

  11. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods, 174, 257–269 (1980).

    Article  ADS  Google Scholar 

  12. V. V. Ovchinnikov, N. V. Gushchina, I. Yu. Romanov, et al., Russ. Phys. J., 59, No. 10, 1521–1527 (2017).

    Article  Google Scholar 

  13. A. V. Markidonov, Fundamental'nye problemy radioelektronnogo priborostroeniya, 16, No. 4. 33–36 (2016).

  14. I. N. Serov, V. I. Margolin, V. A. Zhabreev, et al., Inzhenernaya fizika, No. 1, 50–67 (2005).

  15. S. E. Sabo, Informatsionno-tekhnologicheskii vestnik, No. 3, 119–133 (2016).

  16. Yu. P. Sharkeev, N.V. Girsova, A.I. Ryabchikov, et al., Nucl. Inst. Methods Phys. Res. B, 106, Nos. (1–4), 532–537 (1995).

    Article  ADS  Google Scholar 

  17. A. I. Ryabchikov, P. S. Anan’in, S. V. Dektyarev, et al., ZhTF, 43, No. 23, 3–10 (2017).

  18. V. A. Gribkov, A. S. Demin, E. V. Demina, et al., Prikladnaya fizika, No. 3, 43–51 (2011).

  19. E. A. Azizov, A. A. Airapetov, L. B. Begrambekov, et al., VANT. Ser. Termoyadernyi sintez, No. 37, 30–38 (2014).

  20. V. V. Uglov, G. E. Remnev, A. K. Kuleshov, and M. S. Saltymakov, Fiz. Khim. Obrab. Mater., No. 1, 65–70 (2010).

  21. B. Ganavati, V. A. Kukarenko, and A. G. Kononov, Russ. Phys. J., 58, No. 1, 63–69 (2015).

    Article  Google Scholar 

  22. V. V. Ovchinnikov, F. F. Makhin’ko, and V. I. Solomonov, J. Phys.: Conf. Ser., 652, 012070 (2015).

    Google Scholar 

  23. Haowen Zhong, Jie Zhang, Jie Shen, et al., Nucl. Instrum. Methods Phys. Res., 409, 298–301 (2017).

    Article  ADS  Google Scholar 

  24. A. G. Konnov, V. A. Kukareko, A. V. Belyi, and Yu. P. Sharkeev, Mekhanika mashin, mekhanizmov i materialov, No. 22, 47–53 (2013).

  25. V. K. Struts and G. E. Remnev, Izv. Vyssh. Uchebn. Zaved., 53, No. 10/2, 125–128 (2010).

    Google Scholar 

  26. A. I. Ryabchikov, P. S. Ananin, S. V. Dektyarev, et al., Vacuum, 143, 447– 453 (2017).

    Article  ADS  Google Scholar 

  27. V. P. Miroshkin, Ya. I. Panova, and V. V. Pasynkov, Phys. Solid State, 66, 779–782 (1981).

    Article  Google Scholar 

  28. V. G. Zavodinskii and A. N. Chibisov, Phys. Solid State, 48, No. 2, 363–368 (2006).

    Article  ADS  Google Scholar 

  29. A. P. Surzhikov, T. S. Frangul'yan, S. A. Gyngazov, and S. V. Grigor'ev, Izv. Vyssh. Uchebn. Zaved., Fiz., 54, No. 1/3, 237–241 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gyngazov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 131–137, August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyngazov, S.A., Ryabchikov, A.I., Kostenko, V. et al. Aluminum Ion Beam Treatment of Zirconium Ceramics. Russ Phys J 61, 1513–1519 (2018). https://doi.org/10.1007/s11182-018-1564-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1564-6

Keywords

Navigation