Skip to main content

Advertisement

Log in

Residual Stresses Induced by Elastoplastic Unloading in a Tube Made of Dispersion-Hardened Alloy

  • Published:
Russian Physics Journal Aims and scope

The paper carries out research into elastoplastic unloading using methods of plasticity theory and solid mechanics. Residual stresses are measured in a heavy-walled tube made from a dispersion-hardened copper alloy. It is shown that residual radial stresses are insignificant after the unloading and do not exceed 0.5 MPa. When the ultimate plastic strength is achieved, the amount of residual tangential and axial stresses is almost 17% of the ultimate shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Parker, J. Press. Vessel Technol., 123, 271–277 (2001).

    Article  Google Scholar 

  2. G. H. Majzoobi, G. H. Farrahi, and A. H. Mahmoudi, J. Mater. Sci. Eng. A, 359, 326–331 (2003).

    Article  Google Scholar 

  3. G. J. Franklin and J. L. M. Morrison, Proc. Inst. Mech. Eng., 174, 947–974 (1960).

    Article  Google Scholar 

  4. A. Stacey and G. A. Webster, Int. J. Pres. Ves. Pip., 33., 205–220 (1998).

    Google Scholar 

  5. J. H. Park, Y. S. Lee, J. H. Kim, et al., KSME Proc., 37–42 (2006).

  6. O. V. Matvienko, O. I. Daneyko, and Kovalevskaya T. A., Russ. Phys. J., 60, No. 2, 236–248 (2017).

    Article  Google Scholar 

  7. O. V. Matvienko, O. I. Daneyko, and Kovalevskaya T. A., Russ. Phys. J., 60, No. 4, 562–569 (2017).

    Article  Google Scholar 

  8. O. V. Matvienko, O. I. Daneyko, and Kovalevskaya T. A., Russ. Phys. J., 60, No. 7, 1233–1242 (2017).

    Article  Google Scholar 

  9. E. Orowan, Proc. Symp. on Int. Stresses in Metalls, (1948), pp. 451–454.

  10. M. F. Ashby, Philos. Mag., 14, No. 132, 1157–1178 (1966).

    Article  ADS  Google Scholar 

  11. M. F. Ashby, Physics of Strength and Plasticity [Russian translation], Metallurgiya, Moscow (1972), pp. 88–108.

    Google Scholar 

  12. R. Ebeling and M. F. Ashby, Philos. Mag., 13, No. 124, 805–834 (1966).

    Article  ADS  Google Scholar 

  13. P. B. Hirsch and F. J. Hymphreys, Physics of Strength and Plasticity [Russian translation], Metallurgiya, Moscow (1972), pp. 158–186.

    Google Scholar 

  14. P. M. Hazzledine and P. B. Hirsch, Phil. Mag. 30, No. 6, 1331–1351 (1974).

    Article  ADS  Google Scholar 

  15. F. J. Humphreys and P. B., Hirsch Philos. Mag., 34, 373–399 (1976).

  16. R. Honeycomb, Plastic Deformation of Metals [Russian translation], Mir, Moscow (1972), 408 p.

    Google Scholar 

  17. F. J. Humphreys and A. T. Stewart, Surf. Sci. 31, 389–421 (1972).

    Article  ADS  Google Scholar 

  18. S. M. L. Sastry and B. Ramaswami, Philos. Mag., 32, No. 4, 801–813 (1975).

    Article  ADS  Google Scholar 

  19. A. J. Ardell and S. Pattanaik, Philos. Mag., A50, No. 3, 339–360 (1984).

    Article  ADS  Google Scholar 

  20. F. J. Hymphreys and J. W. Martin, Philos. Mag., 16, No. 143, 927–957 (1967).

    Article  ADS  Google Scholar 

  21. A. T. Stewart and J. W. Martin, Acta Met., 23, 1–7 (1975).

    Article  Google Scholar 

  22. F. J. Hymphreys and P. B. Hirsch, Proc. Royal Soc. London A, 318, No. 1532, 73–92 (1970).

    Article  ADS  Google Scholar 

  23. L. E. Popov, V. S. Kobytev, T. A. Kovalevskaya, Rus. Phys. J., 25, No. 6, 520–541 (1982).

    Google Scholar 

  24. L. E. Popov, V. S. Kobytev, T. A. Kovalevskaya, Plastic Deformation of Alloys [in Russian], Metallurgiya, Moscow (1984), 182 p.

    Google Scholar 

  25. T. A. Kovalevskaya, O. I. Daneiko, S. N. Kolupaeva, and M. E. Semenov, Zhurn. Funktsional. Mater., 1, No. 3, 98–103 (2007).

    Google Scholar 

  26. O. I. Daneyko, N. A. Kulaeva, T. A. Kovalevskaya, and S. N. Kolupaeva, Russ. Phys. J., 58, No. 3, 336–342 (2015).

    Article  Google Scholar 

  27. O. I. Daneyko, T. A. Kovalevskaya, S. N. Kolupaeva, et al., Russ. Phys. J., 54, No. 9, 989–993 (2011).

    Article  Google Scholar 

  28. T. A. Kovalevskaya, O. I. Daneiko, S. N. Kolupaeva, Deformats. Razrush. Mater., No. 1, 29–35 (2006).

  29. K. Johnson, Numerical Methods in Chemistry [Russian translation], Mir, Moscow (1983), 235 p.

    Google Scholar 

  30. N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  31. A. G. Gorshkov, E. I. Starovoitov, and D. V. Tarlakovskii, Theory of Elasticity and Plasticity [in Russian], Fizmatlit, Moscow (2002), 416 p.

    Google Scholar 

  32. O. V. Matvienko, V. P. Bazuev, and V. S. Churilin, Dorog. Most., No. 36, 139–153 (2017).

  33. D. M. Klimov, A. G. Petrov, and D. V. Georgievskii, Viscoelastic Flows: Dynamic Chaos, Stability and Mixing [in Russian], Nauka, Moscow (2005), 394 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matvienko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 113–124, April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matvienko, O.V., Daneyko, O.I. & Kovalevskaya, T.A. Residual Stresses Induced by Elastoplastic Unloading in a Tube Made of Dispersion-Hardened Alloy. Russ Phys J 61, 730–742 (2018). https://doi.org/10.1007/s11182-018-1454-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1454-y

Keywords

Navigation